《编程之美: 求二叉树中节点的最大距离》的另一个解法

《编程之美: 求二叉树中节点的最大距离》的另一个解法


昨天花了一个晚上为《编程之美》,在豆瓣写了一篇书评《迟来的书评和感想──给喜爱编程的朋友》。书评就不转载到这里了,取而代之,在这里介绍书里其中一条问题的另一个解法。这个解法比较简短易读及降低了空间复杂度,或者可以说觉得比较「美」吧。

问题定义

如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。

《编程之美: 求二叉树中节点的最大距离》的另一个解法_第1张图片

书上的解法

书中对这个问题的分析是很清楚的,我尝试用自己的方式简短覆述。

计算一个二叉树的最大距离有两个情况:

  • 情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
  • 情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。

只需要计算这两个情况的路径距离,并取其大者,就是该二叉树的最大距离。

我也想不到更好的分析方法。

但接着,原文的实现就不如上面的清楚 (源码可从这里下载):


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// 数据结构定义
struct NODE
{
     NODE* pLeft;        // 左子树
     NODE* pRight;       // 右子树
     int nMaxLeft;       // 左子树中的最长距离
     int nMaxRight;      // 右子树中的最长距离
     char chValue;       // 该节点的值
};
 
int nMaxLen = 0;
 
// 寻找树中最长的两段距离
void FindMaxLen(NODE* pRoot)
{
     // 遍历到叶子节点,返回
     if (pRoot == NULL)
     {
         return ;
     }
 
     // 如果左子树为空,那么该节点的左边最长距离为0
     if (pRoot -> pLeft == NULL)
     {
         pRoot -> nMaxLeft = 0;
     }
 
     // 如果右子树为空,那么该节点的右边最长距离为0
     if (pRoot -> pRight == NULL)
     {
         pRoot -> nMaxRight = 0;
     }
 
     // 如果左子树不为空,递归寻找左子树最长距离
     if (pRoot -> pLeft != NULL)
     {
         FindMaxLen(pRoot -> pLeft);
     }
 
     // 如果右子树不为空,递归寻找右子树最长距离
     if (pRoot -> pRight != NULL)
     {
         FindMaxLen(pRoot -> pRight);
     }
 
     // 计算左子树最长节点距离
     if (pRoot -> pLeft != NULL)
     {
         int nTempMax = 0;
         if (pRoot -> pLeft -> nMaxLeft > pRoot -> pLeft -> nMaxRight)
         {
             nTempMax = pRoot -> pLeft -> nMaxLeft;
         }
         else
         {
             nTempMax = pRoot -> pLeft -> nMaxRight;
         }
         pRoot -> nMaxLeft = nTempMax + 1;
     }
 
     // 计算右子树最长节点距离
     if (pRoot -> pRight != NULL)
     {
         int nTempMax = 0;
         if (pRoot -> pRight -> nMaxLeft > pRoot -> pRight -> nMaxRight)
         {
             nTempMax = pRoot -> pRight -> nMaxLeft;
         }
         else
         {
             nTempMax = pRoot -> pRight -> nMaxRight;
         }
         pRoot -> nMaxRight = nTempMax + 1;
     }
 
     // 更新最长距离
     if (pRoot -> nMaxLeft + pRoot -> nMaxRight > nMaxLen)
     {
         nMaxLen = pRoot -> nMaxLeft + pRoot -> nMaxRight;
     }
}

这段代码有几个缺点:

  1. 算法加入了侵入式(intrusive)的资料nMaxLeft, nMaxRight
  2. 使用了全局变量 nMaxLen。每次使用要额外初始化。而且就算是不同的独立资料,也不能在多个线程使用这个函数
  3. 逻辑比较复杂,也有许多 NULL 相关的条件测试。

我的尝试

我认为这个问题的核心是,情况A 及 B 需要不同的信息: A 需要子树的最大深度,B 需要子树的最大距离。只要函数能在一个节点同时计算及传回这两个信息,代码就可以很简单:


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include
 
using namespace std;
 
struct NODE
{
     NODE *pLeft;
     NODE *pRight;
};
 
struct RESULT
{
     int nMaxDistance;
     int nMaxDepth;
};
 
RESULT GetMaximumDistance(NODE* root)
{
     if (!root)
     {
         RESULT empty = { 0, -1 };   // trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero.
         return empty;
     }
 
     RESULT lhs = GetMaximumDistance(root->pLeft);
     RESULT rhs = GetMaximumDistance(root->pRight);
 
     RESULT result;
     result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1);
     result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2);
     return result;
}

计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。

为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。

除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。

测试代码

以下也提供测试代码给读者参考 (页数是根据第7次印刷,节点是由上至下、左至右编号):


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
void Link(NODE* nodes, int parent, int left, int right)
{
     if (left != -1)
         nodes[parent].pLeft = &nodes[left];
 
     if (right != -1)
         nodes[parent].pRight = &nodes[right];
}
 
void main()
{
     // P. 241 Graph 3-12
     NODE test1[9] = { 0 };
     Link(test1, 0, 1, 2);
     Link(test1, 1, 3, 4);
     Link(test1, 2, 5, 6);
     Link(test1, 3, 7, -1);
     Link(test1, 5, -1, 8);
     cout << "test1: " << GetMaximumDistance(&test1[0]).nMaxDistance << endl;
 
     // P. 242 Graph 3-13 left
     NODE test2[4] = { 0 };
     Link(test2, 0, 1, 2);
     Link(test2, 1, 3, -1);
     cout << "test2: " << GetMaximumDistance(&test2[0]).nMaxDistance << endl;
 
     // P. 242 Graph 3-13 right
     NODE test3[9] = { 0 };
     Link(test3, 0, -1, 1);
     Link(test3, 1, 2, 3);
     Link(test3, 2, 4, -1);
     Link(test3, 3, 5, 6);
     Link(test3, 4, 7, -1);
     Link(test3, 5, -1, 8);
     cout << "test3: " << GetMaximumDistance(&test3[0]).nMaxDistance << endl;
 
     // P. 242 Graph 3-14
     // Same as Graph 3-2, not test
 
     // P. 243 Graph 3-15
     NODE test4[9] = { 0 };
     Link(test4, 0, 1, 2);
     Link(test4, 1, 3, 4);
     Link(test4, 3, 5, 6);
     Link(test4, 5, 7, -1);
     Link(test4, 6, -1, 8);
     cout << "test4: " << GetMaximumDistance(&test4[0]).nMaxDistance << endl;
}

你想到更好的解法吗?

来自:http://www.cnblogs.com/miloyip/archive/2010/02/25/binary_tree_distance.html

你可能感兴趣的:(《编程之美: 求二叉树中节点的最大距离》的另一个解法)