volatile的作用:volatile变量进行读时,会有一个主内存到工作内存到拷贝动作,进行写后,会有一个工作内存刷新主内存到动作。
(即:即时刷新变量的值,主内存<==>私有内存,保证线程之间可见,但不保证原子性)
保证线程安全
AtomicInteger atomicInteger = new AtomicInteger(0); //加上static转全局变量
atomicInteger.incrementAndGet();// 加一
atomicInteger.decrementAndGet();//减一
public class Member {
public int count=0;
public static ThreadLocal threadLocal=new ThreadLocal(){
@Override
protected Integer initialValue() {
// TODO Auto-generated method stub
return 0;
}
};
public String getcount(){
count=threadLocal.get()+1;
threadLocal.set(count);
return count+"";
}
}
public class ThreadLockTest {
public static void main(String[] args) {
Member member = new Member();
MemberVo memberVo1 = new MemberVo(member);
MemberVo memberVo2 = new MemberVo(member);
MemberVo memberVo3 = new MemberVo(member);
memberVo1.start();
memberVo2.start();
memberVo3.start();
}
}
class MemberVo extends Thread{
private Member member;
MemberVo(Member member){
this.member=member;
}
@Override
public void run() {
for(int i=0;i<3;i++){
System.out.println("ThreadName:"+currentThread().getName()+"||"+"member:"+member.getcount());
}
}
}
原理:各个线程的私有内存取变量主内存的值,然后用ThreadLocalMap形式
Vector线程安全(其中Add方法源 带锁 synchronized)、ArrayList线程不安全(效率高)
实现原理都是通过数组来实现,效果都是--查询速度快,增删改速度慢
添加、删除加锁,查询不加锁(但使用volatile可保证数据准确性)
HashTable线程安全,HashMap线程不安全、ConcurrentHashMap线程安全。
HashTable:基本所有的方法都带锁,线程安全,效率太低。
HashMap:不带锁,不安全,但效率高。
ConcurrentHashMap:带锁(分为16个不同的锁),线程安全,且效率高。(推荐使用)
其中:ConcurrentHashMap内部使用段(Segment)来表示这些不同的部分,每个段其实就是一个
小的HashTable,它们有自己的锁。只要多个修改操作发生在不同的段上,它们就可以并
发进行。把一个整体分成了16个段(Segment.也就是最高支持16个线程的并发修改操作。
这也是在重线程场景时减小锁的粒度从而降低锁竞争的一种方案。并且代码中大多共享变
量使用volatile关键字声明,目的是第一时间获取修改的内容,性能非常好。
CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能。比如有一个任务A,它要等待其他2个任务执行完毕之后才能执行,此时就可以利用CountDownLatch来实现这种功能了。
public class Test002 {
public static void main(String[] args) throws InterruptedException {
System.out.println("等待子线程执行完毕...");
CountDownLatch countDownLatch = new CountDownLatch(2); //设置总值
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("子线程," + Thread.currentThread().getName() + "开始执行...");
countDownLatch.countDown();// 每次减去1
System.out.println("子线程," + Thread.currentThread().getName() + "结束执行...");
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("子线程," + Thread.currentThread().getName() + "开始执行...");
countDownLatch.countDown();
System.out.println("子线程," + Thread.currentThread().getName() + "结束执行...");
}
}).start();
countDownLatch.await();// 调用当前方法主线程阻塞 countDown结果为0, 阻塞变为运行状态
System.out.println("两个子线程执行完毕....");
System.out.println("继续主线程执行..");
}
}
CyclicBarrier初始化时规定一个数目,然后计算调用了CyclicBarrier.await()进入等待的线程数。当线程数达到了这个数目时,所有进入等待状态的线程被唤醒并继续。
CyclicBarrier就象它名字的意思一样,可看成是个障碍, 所有的线程必须到齐后才能一起通过这个障碍。
CyclicBarrier初始时还可带一个Runnable的参数, 此Runnable任务在CyclicBarrier的数目达到后,所有其它线程被唤醒前被执行。
class Writer extends Thread {
private CyclicBarrier cyclicBarrier;
public Writer(CyclicBarrier cyclicBarrier){
this.cyclicBarrier=cyclicBarrier;
}
@Override
public void run() {
System.out.println("线程" + Thread.currentThread().getName() + ",正在写入数据");
try {
Thread.sleep(3000);
} catch (Exception e) {
// TODO: handle exception
}
System.out.println("线程" + Thread.currentThread().getName() + ",写入数据成功.....");
try {
cyclicBarrier.await();
} catch (Exception e) {
}
System.out.println("所有线程执行完毕..........");
}
}
public class Test001 {
public static void main(String[] args) {
CyclicBarrier cyclicBarrier=new CyclicBarrier(5);
for (int i = 0; i < 5; i++) {
Writer writer = new Writer(cyclicBarrier);
writer.start();
}
}
}
Semaphore是一种基于计数的信号量。它可以设定一个阈值,基于此,多个线程竞争获取许可信号,做自己的申请后归还,超过阈值后,线程申请许可信号将会被阻塞。Semaphore可以用来构建一些对象池,资源池之类的,比如数据库连接池,我们也可以创建计数为1的Semaphore,将其作为一种类似互斥锁的机制,这也叫二元信号量,表示两种互斥状态。它的用法如下:
availablePermits函数用来获取当前可用的资源数量
wc.acquire(); //申请资源 ,通过 acquire() 获取一个许可,如果没有就等待
wc.release();// 释放资源 ,release() 释放一个许可。
// 创建一个计数阈值为5的信号量对象
// 只能5个线程同时访问
Semaphore semp = new Semaphore(5);
try {
// 申请许可
semp.acquire();
try {
// 业务逻辑
} catch (Exception e) {
} finally {
// 释放许可
semp.release();
}
} catch (InterruptedException e) {
}
案例:
需求: 一个厕所只有3个坑位,但是有10个人来上厕所,那怎么办?假设10的人的编号分别为1-10,并且1号先到厕所,10号最后到厕所。那么1-3号来的时候必然有可用坑位,顺利如厕,4号来的时候需要看看前面3人是否有人出来了,如果有人出来,进去,否则等待。同样的道理,4-10号也需要等待正在上厕所的人出来后才能进去,并且谁先进去这得看等待的人是否有素质,是否能遵守先来先上的规则。
代码:
class Parent implements Runnable {
private String name;
private Semaphore wc;
public Parent(String name,Semaphore wc){
this.name=name;
this.wc=wc;
}
@Override
public void run() {
try {
// 剩下的资源(剩下的茅坑)
int availablePermits = wc.availablePermits();
if (availablePermits > 0) {
System.out.println(name+"天助我也,终于有茅坑了...");
} else {
System.out.println(name+"怎么没有茅坑了...");
}
//申请茅坑 如果资源达到3次,就等待
wc.acquire();
System.out.println(name+"终于轮我上厕所了..爽啊");
Thread.sleep(new Random().nextInt(1000)); // 模拟上厕所时间。
System.out.println(name+"厕所上完了...");
wc.release();
} catch (Exception e) {
}
}
}
public class TestSemaphore02 {
public static void main(String[] args) {
// 一个厕所只有3个坑位,但是有10个人来上厕所,那怎么办?假设10的人的编号分别为1-10,并且1号先到厕所,10号最后到厕所。那么1-3号来的时候必然有可用坑位,顺利如厕,4号来的时候需要看看前面3人是否有人出来了,如果有人出来,进去,否则等待。同样的道理,4-10号也需要等待正在上厕所的人出来后才能进去,并且谁先进去这得看等待的人是否有素质,是否能遵守先来先上的规则。
Semaphore semaphore = new Semaphore(3);
for (int i = 1; i <=10; i++) {
Parent parent = new Parent("第"+i+"个人,",semaphore);
new Thread(parent).start();
}
}
}
(链接:java多线程之线程安全队列LinkedBlockingQueue)
1、LinkedBlockingQueue 是线程安全的,实现了先进先出的特性
2、BlockingQueue提供了以下几个方法:
add 增加一个元索 如果队列已满,则抛出一个IIIegaISlabEepeplian异常
remove 移除并返回队列头部的元素 如果队列为空,则抛出一个NoSuchElementException异常
element 返回队列头部的元素 如果队列为空,则抛出一个NoSuchElementException异常
offer 添加一个元素并返回true 如果队列已满,则返回false
poll 移除并返问队列头部的元素 如果队列为空,则返回null
peek 返回队列头部的元素 如果队列为空,则返回null
put 添加一个元素 如果队列满,则阻塞
take 移除并返回队列头部的元素 如果队列为空,则阻塞
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,
还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是,要做到合理利用
线程池,必须对其实现原理了如指掌。
newCachedThreadPool创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
newScheduledThreadPool 创建一个定长线程池,支持定时及周期性任务执行。
newSingleThreadExecutor 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。