- Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 论文阅读
钟屿
论文阅读计算机视觉人工智能
用于动态场景去模糊的深度多尺度卷积神经网络摘要针对一般动态场景的非均匀盲去模糊是一个具有挑战性的计算机视觉问题,因为模糊不仅来源于多个物体运动,还来源于相机抖动和场景深度变化。为了去除这些复杂的运动模糊,传统的基于能量优化的方法依赖于简单的假设,例如模糊核是部分均匀或局部线性的。此外,最近的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统的去模糊方法在模糊核难以近似或参数化的
- 使用什么工具测试昇腾 NPU卡的性能和使用情况
alankuo
人工智能
测试昇腾NPU卡的性能和使用情况可以借助华为提供的官方工具和第三方工具。以下是常用的工具及其功能介绍:1.CANN工具链(华为昇腾计算架构)CANN(ComputeArchitectureforNeuralNetworks)是昇腾AI处理器的基础软件平台,提供以下核心工具:AtlasDeviceManager(ADM)系统级监控工具,支持可视化管理集群和设备。功能:实时监控NPU温度、功耗、利用率
- 模型移植实战:从PyTorch到ONNX完整指南
慕婉0307
神经网络pytorch人工智能python
一、认识ONNXONNX(OpenNeuralNetworkExchange)是一种开放的模型表示格式,由微软和Facebook(现Meta)在2017年共同推出,旨在解决深度学习模型在不同框架之间的互操作性问题。ONNX的主要优势包括:跨框架兼容性:支持主流深度学习框架间的模型转换,包括PyTorch、TensorFlow、MXNet、CNTK等例如,可以将PyTorch训练的ResNet模型导
- BFS-FloodFill 算法 解决最短路问题 多源 解决拓扑排序
penguin_bark
#BFS算法宽度优先leetcode
文章目录一、FloodFill算法[733.图像渲染](https://leetcode.cn/problems/flood-fill/description/)2.思路3.代码[200.岛屿数量](https://leetcode.cn/problems/number-of-islands/description/)2.思路3.代码[LCR105.岛屿的最大面积](https://leetcod
- 21、子图同构问题的深度解析
metal
子图同构图论算法
子图同构问题的深度解析1.子图同构问题概述子图同构问题是图论中的一个核心问题,广泛应用于社交网络分析、生物信息学、模式识别等领域。该问题的定义是:给定两个图,一个是较大的主图(HostGraph),另一个是较小的模式图(PatternGraph),判断主图中是否存在一个子图与模式图同构。简单来说,就是要找到主图中与模式图结构完全一致的子图。子图同构问题的难度在于它是一个NP完全问题,意味着在最坏情
- Dijkstra算法求最短路径问题
Dijkstra算法求最短路径问题——HM图论中最常见的问题就应是最短路径问题了,解决这一问题的几个基本算法有三个:Floyed、Dijkstra和SPFA了。现在我来浅谈一下Dijkstra的思想与实现。单纯的Dijkstra并不是很快,算一个点到其余各点的时间复杂度是O(n^2)级别,算每个点到其余各点的复杂度就是O(n^3)了,在提高组竞赛中不占优势,但其进行优化后便很强大了,如用堆优化Di
- P5680 [GZOI2017] 共享单车 题解
MYJ_aiie
题解图论c++算法学习
P5680[GZOI2017]共享单车题意:(真的是非常难懂啊)一张带权双向连通图和源点kkk,画出它的最短路径树。树上每个点颜色初始为000,有两种操作:000操作是把部分点的颜色取反,$1$操作是根据给定点和根节点(也就是前面的源点),建虚树,问在虚树上使得颜色为111的点与KKK不连通的所需的最小代价。N≤50000N\le50000N≤50000,M≤100000M\le100000M≤1
- 算法:floyd和高精度 洛谷 最短路 P1037 [NOIP 2002 普及组] 产生数
健仙
算法算法数据结构c++
思路:因为某个数变成另一个数是单向的,并且一个数变成另一个数后还可以变,让我联想到图论的内容,一个数变成其他数就相当于这个数与另一个数有单向边,而且边之间的线路可以让一个数可能变成很多数,因为数据量很小,我就想到了floyd,就是我们用floyd做传递闭包,得出一个数可以变成哪些数,然后将每个位看一遍,乘起来就是答案,不过这里有个小坑,答案超过了2的64次方,所以还要高精度算法处理一下。代码:#i
- 算法竞赛备赛——【图论】求最短路径——Floyd算法
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
floyd算法基于动态规划应用:求多源最短路时间复杂度:n^3dijkstra:不能解决负边权floyd:能解决负边权不能解决负边权回路问题求最短路径:dijkstrabfsfloyd思路1.让任意两点之间的距离变短:引入中转点k通过k来中转i---->k---->jj2.找状态:n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x最终状态:dp[n][i][j]=x;中间状态:dp[k]
- 生成式人工智能实战 | 像素卷积神经网络(PixelCNN)
盼小辉丶
生成式人工智能实战150讲深度学习生成模型aigc
生成式人工智能实战|像素卷积神经网络0.前言1.PixelCNN工作原理1.1掩码卷积层1.2残差块2.PixelCNN分析3.使用混合分布改进PixelCNN3.1模型构建3.2模型训练0.前言像素卷积神经网络(PixelConvolutionalNeuralNetwork,PixelCNN)是于2016年提出的一种图像生成模型,其根据前面的像素预测下一个像素的概率来逐像素地生成图像,模型可以通
- Java机考题:815. 公交路线 图论BFS
吗喽对你问好
java图论宽度优先
给你一个数组routes,表示一系列公交线路,其中每个routes[i]表示一条公交线路,第i辆公交车将会在上面循环行驶。例如,路线routes[0]=[1,5,7]表示第0辆公交车会一直按序列1->5->7->1->5->7->1->...这样的车站路线行驶。现在从source车站出发(初始时不在公交车上),要前往target车站。期间仅可乘坐公交车。求出最少乘坐的公交车数量。如果不可能到达终点
- 【转】【译】How to Handle Very Long Sequences with LSTM(LSTM RNN 超长序列处理)
开始奋斗的胖子
机器学习RNNLSTM序列深度学习
原文地址http://machinelearningmastery.com/handle-long-sequences-long-short-term-memory-recurrent-neural-networks/一个长的输入序列却只对应一个或者一小段输出就是我们经常说的序列标注和序列分类。主要包括下面一些例子:包含上千个词的文件情感分类(NLP)包含上千个时间状态的脑电痕迹分类(Medici
- 图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路
無量空所
leetcode算法图论c++
本系列算法用来解决有负权边的情况Bellman_ford算法精讲题目链接:94.城市间货物运输I题目描述:某国为促进城市间经济交流,决定对货物运输提供补贴。共有n个编号为1到n的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本-政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用
- 数据结构错题收录(十)
程序员丶星霖
1、下列关于广度优先算法的说法中,正确的是()。Ⅰ.当各边的权值相等时,广度优先算法可以解决单源最短路径问题Ⅱ.当个边的权值不等时,广度优先算法可用来解决单源最短路径问题Ⅲ.广度优先遍历算法类似于树中的后序遍历算法Ⅳ.实现图的广度优先算法时,使用的数据结构是队列•A:Ⅰ、Ⅳ•B:Ⅱ、Ⅲ、Ⅳ•C:Ⅱ、Ⅳ•D:Ⅰ、Ⅲ、Ⅳ解析广度优先搜索以起始结点为中心,一层一层地向外层扩展遍历图的顶点,因此无法考虑到
- 分层图最短路径算法详解
GG不是gg
数据结构与算法分析#算法分析与设计图搜索算法
分层图最短路径算法详解一、分层图算法的核心思想1.1问题引入:带约束的最短路径1.2分层图的核心思路二、分层图的构建方法2.1分层图的结构定义2.2构建步骤(以“最多k次边权改为0”为例)三、分层图最短路径的求解3.1算法步骤3.2Java代码实现(以Dijkstra为例)四、分层图算法的关键细节4.1状态表示与空间优化4.2边的处理4.3复杂度分析五、典型应用场景5.1带次数约束的路径优化5.2
- 【Qualcomm】高通SNPE框架简介、下载与使用
Jackilina_Stone
人工智能QualcommSNPE
目录一高通SNPE框架1SNPE简介2QNN与SNPE3Capabilities4工作流程二SNPE的安装与使用1下载2Setup3SNPE的使用概述一高通SNPE框架1SNPE简介SNPE(SnapdragonNeuralProcessingEngine),是高通公司推出的面向移动端和物联网设备的深度学习推理框架。SNPE提供了一套完整的深度学习推理框架,能够支持多种深度学习模型,包括Pytor
- 使用NVIDIA NeRF将2D图像转换为逼真的3D模型(Python)
ByteWhiz
3dpython计算机视觉Python
使用NVIDIANeRF将2D图像转换为逼真的3D模型(Python)NeuralRadianceFields(NeRF)是一种强大的方法,可以将2D图像转换为逼真的3D模型。它使用神经网络来建模场景的辐射场,并通过渲染多个视角的图像来重建3D模型。在本文中,我们将使用Python和NVIDIANeRF库来实现这一过程。首先,我们需要安装所需的库。我们可以通过以下命令使用pip安装NVIDIANe
- LeetCode第317题_离建筑物最近的距离
@蓝莓果粒茶
算法leetcodelinux算法c#学习pythonc++
LeetCode第317题:离建筑物最近的距离文章摘要本文详细解析LeetCode第317题"离建筑物最近的距离",这是一道图论和广度优先搜索的问题。文章提供了基于多源BFS的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升图论算法能力的程序员。核心知识点:广度优先搜索、图论、矩阵遍历难度等级:困难推荐人群:具有图论基础,想要提升算法能力的程序员题目描述
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- AI产品经理需要了解的算法知识
AI劳模
人工智能产品经理AI产品经理AI产品经理入门零基础入门产品经理算法语言模型
1、自然语言生成(NLG)自然语言生成(NaturalLanguageGeneration,简称NLG)是一种人工智能技术,它的目标是将计算机的数据、逻辑或算法产生的信息转换成人类可读的自然语言文本。换句话说,NLG能让机器“学会”写文章、报告、故事或者其他任何形式的文字,就像人类作家那样。这项技术使得机器能够理解复杂的数据并将其转化为易于理解的语言,以适应不同的受众和情境。应用实例:金融报告自动
- nl2sql的解药pipe syntax
快乐的打字员
大数据人工智能数据库nl2sqlchatbi
NL2SQL的解药:PipeSyntax在数字化转型的浪潮中,数据已成为企业的核心资产,但传统SQL查询语言的学习曲线和复杂性却成为了业务人员与数据之间的无形屏障。NL2SQL(NaturalLanguagetoSQL)技术旨在打破这一隔阂,让用户通过自然语言直接获取数据洞察。然而,随着应用场景的复杂化,NL2SQL面临着自然语言的模糊性与SQL精确性之间的鸿沟,以及复杂查询生成的准确性与效率问题
- Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
网罗开发
Swift算法swift图论
文章目录摘要描述示例题解答案DFS遍历每个连通区域Union-Find(并查集)题解代码分析(Swift实现:DFS)题解代码详解构建邻接表DFS深度优先搜索遍历所有节点示例测试及结果示例1示例2示例3时间复杂度分析空间复杂度分析总结摘要图是算法中最具挑战性的结构之一,而“连通分量”这个词听起来也有点像社交网络里的“圈子”概念。给你一张无向图,节点编号从0到n-1,现在请你找出这个图中到底有多少个
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 开源人工神经网络库(OpenANN)
deepdata_cn
人工智能神经网络
OpenANN(OpenANN,OpenArtificialNeuralNetworkLibrary)是一个开源的人工神经网络库,基于C++编写,依赖Eigen3库进行高效的矩阵运算,使用CMake进行项目构建,支持多种神经网络架构,包括前馈神经网络、卷积神经网络和循环神经网络等,适用于图像识别、自然语言处理、时间序列预测等多种场景。提供数据预处理、模型保存和加载、超参数优化等功能。支持GPU加速
- 10、 量子神经网络:从理论到实践
安检
量子神经网络PennyLaneQiskit
量子神经网络:从理论到实践1.量子神经网络简介量子神经网络(QuantumNeuralNetworks,QNNs)是量子计算与经典机器学习相
- 深度神经网络课程设计:从理论到实践
Vita Libre
本文还有配套的精品资源,点击获取简介:深度神经网络是深度学习预测的核心技术,本课程设计项目旨在教授学生如何构建和应用深度神经网络进行各种预测任务,包括图像识别和自然语言处理。学生将通过源代码示例学习从网络架构设计、数据预处理到模型训练与评估的完整流程,并掌握深度学习的基本概念、组件及技巧。1.深度神经网络定义和在深度学习预测中的角色深度神经网络(DeepNeuralNetworks,DNNs)是深
- C++最小生成树算法详解
你的冰西瓜
c++算法图论最小生成树
C++最小生成树算法详解引言在图论中,最小生成树(MinimumSpanningTree,MST)是一个非常重要的概念。对于给定的带权无向连通图,最小生成树是一棵包含图中所有顶点且边权之和最小的树。它在网络设计、电路布线等实际应用中具有广泛的意义。本文将详细介绍两种常见的最小生成树算法:Prim算法和Kruskal算法,并提供C++实现代码。一、最小生成树的基本概念1.1生成树一个连通图的生成树是
- 算法学习笔记:10.Prim 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
呆呆企鹅仔
算法学习算法学习笔记JavaPrim
在图论的世界里,最小生成树(MinimumSpanningTree,MST)是一个至关重要的概念,它在通信网络设计、电路布线、交通规划等领域有着广泛的应用。求解最小生成树的算法中,Prim算法以其独特的“逐步扩展”思想占据着重要地位。Prim算法的基本概念在正式介绍Prim算法之前,我们先回顾一下最小生成树的定义:对于一个具有n个顶点的带权连通图,其最小生成树是包含所有n个顶点的一棵无环子图,且该
- LSTM 论文(Hochreiter & Schmidhuber, 1997)精读(三)
文章:SeppHochreiter,JürgenSchmidhuber;LongShort-TermMemory.NeuralComput1997;9(8):1735–1780.doi:https://doi.org/10.1162/neco.1997.9.8.1735第2节PreviousWork(已有研究),这是论文对以往方法的一个评述,总结了已有递归神经网络在面对时间序列学习、尤其是长时依赖
- 结构方程模型(SEM)高阶应用系列
梦想的初衷~
结构方程生态环境python开发语言结构方程
结构方程模型(StructuralEquationModeling)是分析多变量间因果关系的利器,在众多学科领域具有巨大应用潜力。我们前期推出的《基于R语言结构方程模型》通过结构方程原理介绍、结构方程全局和局域估计、模型构建和调整、潜变量分析、复合变量分析及结构方程贝叶斯方法实现等一系列专题的介绍及大量案例讲解,由浅入深地系统介绍了结构方程模型的建立、拟合、评估、筛选和结果展示全过程,得到学员广泛
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag