- 第84期 | GPTSecurity周报
云起无垠
GPTSecurity人工智能gptAIGC
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.利用数据流路径对大
- 使用onnxruntime-web 运行yolov8-nano推理
CHEN_RUI_2200
机器学习YOLO
ONNX(OpenNeuralNetworkExchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8识别预览图片:1.跨平台兼容性ONNX是一种开放的格式,可以在不同的深度学习框架之间共享模型,如PyTorch、TensorFlow、MXNet和Caffe2。这使得用户可以在一个框架中训练模
- 使用Bert+BiLSTM+CRF训练 NER任务
CHEN_RUI_2200
机器学习bert人工智能深度学习
使用的数据集在这里E-CommercialNERDataset/电商NER数据集_数据集-阿里云天池针对面向电商的命名实体识别研究,我们通过爬取搜集了淘宝商品文本的标题,并标注了4大类,9小类的实体类别。具体类型及实体数量如下针对面向电商的命名实体识别研究,我们通过爬取搜集了淘宝商品文本的标题,并标注了4大类,9小类的实体类别。具体类型及实体数量如下:每个文件数据格式相同,都为根据BIschema
- Silero VAD 开源项目教程
苏鹃咪Healthy
SileroVAD开源项目教程项目地址:https://gitcode.com/gh_mirrors/si/silero-vad项目介绍SileroVAD是一个预训练的企业级语音活动检测器(VoiceActivityDetector),由snakers4团队开发并开源在GitHub上。该项目支持多种语言和不同领域的音频,具有灵活的采样率(8000Hz和16000Hz),并且可以在PyTorch和O
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- json格式的标记文件转yolo格式(txt)的标记文件
帅气的亮
jsonYOLOpython
背景我在使用anylabeling标记软件时发现导出的标记文件格式只能是json格式,而我yolov8训练模型的标记文件需要时txt格式的,所以我需要写一个转换脚本脚本1.脚本1这个脚本是针对于矩形框标记的转换,也就是目标检测importjsonimportosdefconvert_json_to_yolo(json_file_path,output_dir,class_mapping):"""将
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI人工智能深度学习算法:搭建可拓展的深度学习模型架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,深度学习作为其主要驱动力之一,已经在各个领域取得了显著的成果。然而,随着模型规模的不断扩大,如何高效地搭建、训练和部署深度学习模型,成为一个亟待解决的问题。传统的单机训练方式在计算资源有限的情况
- 高效向量搜索RAG解决方案(Canopy)
deepdata_cn
RAGRAG
Canopy利用Pinecone在高效向量搜索方面的专业知识,提供强大且可扩展的RAG(Retrieval-AugmentedGeneration)解决方案。包括与Pinecone向量数据库的紧密集成,支持流处理和实时更新,先进的查询处理和重新排序功能,以及管理知识库和版本控制的工具。一、基本原理1.向量嵌入:Canopy首先会将文本数据转换为向量表示,通常使用预训练的语言模型等技术,将文本映射到
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- 使用小尺寸的图像进行逐像素语义分割训练,出现样本不均衡训练效果问题
司南锤
深度学习遥感计算机视觉人工智能机器学习
在使用小尺寸图像进行逐像素语义分割训练时,确实可能出现样本不均衡问题,且这种问题可能比大尺寸图像更显著。1.小尺寸图像如何加剧样本不均衡?(1)局部裁剪导致类别分布偏差问题:遥感图像中某些类别(如道路、建筑)可能稀疏分布。小尺寸裁剪后,部分训练样本可能完全不含某些类别(例如一块纯农田的补丁),导致模型对这些类别缺乏学习机会。示例:原图中“道路”占比5%,若裁剪为256x256的小图,部分小图中可能
- 06-机器学习-数据预处理
不会打代码呜呜呜呜
机器学习机器学习人工智能
数据清洗数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例:一、数据清洗的核心任务问题类型表现示例影响缺失值数值型字段为空(NaN)模型无法处理缺失值,导致训练中断或偏差异常值年龄=200岁,房价=-100万扭曲统计指标(如均值),降低模型泛化性重复数据两行记录完全相同导致模型过拟合,降低
- 高可用架构,高性能架构和高并发架构
架构随笔录
超级架构师架构kafka分布式hbase大数据hdfs
胡弦,视频号2023年度优秀创作者,互联网大厂P8技术专家,SpringCloudAlibaba微服务架构实战派(上下册)和RocketMQ消息中间件实战派(上下册)的作者,资深架构师,技术负责人,极客时间训练营讲师,四维口袋KVP最具价值技术专家,技术领域专家团成员,2021电子工业出版社年度优秀作者,获得2023电子工业出版技术成长领路人称号,荣获2024年电子工业出版社博文视点20周年荣誉专
- 预训练语言模型
Algorithm_Engineer_
基础知识和深度学习语言模型人工智能自然语言处理
一.预训练模型的基本介绍预训练模型是一种在大规模数据上训练而得的模型,通常通过无监督学习或自监督学习的方式进行。在预训练阶段,模型被训练来学习数据的内在表示,而无需标注数据或任务特定的目标函数。这种学习能力使得预训练模型可以捕获数据的复杂结构和特征,并且在后续的特定任务上进行微调,从而提高模型在目标任务上的性能。1.1预训练过程数据收集与处理:收集大规模的数据,并对数据进行预处理,以便模型训练使用
- IsaacLab从入门到精通(六)真机部署与Sim2real
NathanWu7
IsaacLab人工智能机器人深度学习机器学习
在之前的教程中,我们已经完成了整个强化学习任务流程,现在我们需要将自己训练的策略迁移到真机上1.1Sim2real简要方法论强化学习的Sim2real问题一直以来是非常难解决的问题,在仿真环境中训练的policy往往很难迁移到实际的机器人系统上,因此我们需要用一些特殊的方法协助来实现这个过程。1.1.1建立数字孪生(Digitaltwin)在仿真环境中,我们建立的环境需要尽可能与真实世界对齐,因此
- 使用 PyTorch 实现逻辑回归:从数据到模型保存与加载
弥树子
pytorch逻辑回归人工智能
在机器学习中,逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将通过一个简单的示例,展示如何使用PyTorch框架实现逻辑回归模型,从数据准备到模型训练、保存和加载,最后进行预测。1.数据准备逻辑回归的核心是通过学习数据中的特征与标签之间的关系来进行分类。在本示例中,我们手动创建了一个简单的二维数据集,包含两类数据点。第一类数据点的标签为0,第二类数据点的标签为1。class1_point
- 奖励模型:解析大语言模型的关键工具
XianxinMao
人工智能
标题:奖励模型:解析大语言模型的关键工具文章信息摘要:奖励模型是理解和审核大语言模型(LLM)的重要工具,通过简单的评估方式提供了模型内部表征和性能的深入洞察。它不仅能静态比较模型表现,还可帮助诊断训练问题,为LLM研究提供独特视角,增强模型开发过程的透明度和可问责性。==================================================详细分析:核心观点:奖励模型是
- ACM寒假集训专题二总结
欢迎来到Anon Tokyo的世界
c++算法
噩梦般的二分法Easy1:#includeusingnamespacestd;intmain(){intn;cin>>n;intgroup[100000];for(inti=0;i>a;group[i]=a;}intq,x,ans,mid;cin>>q;intright=n-1;intleft=0;for(intj=0;j>x;while(right>=left){mid=(right+left)
- AI Agent(智能体)技术白皮书(Google,2024)
花生糖@
AIGC学习资料库人工智能AIAgent智能体AI实战
1引言1.1人类的先验知识与工具的使用人类很很好地处理复杂和微妙的模式识别任务。能做到这一点是因为,我们会通过书籍、搜索或计算器之类的工具来补充我们头脑中的先验知识,然后才会给出一个结论(例如,“图片中描述的是XX”)。1.2人类的模仿者与以上类似,我们可以对生成式AI模型进行训练,让它们能使用工具来在现实世界中获取实时信息或给出行动建议。例如,利用数据库查询工具获取客户的购物历史,然后给出购物建
- 寒假学web--day06
onehang.
网络安全php
简介今天的主要内容为文件上传,包括一些简单的和一些高级的绕过姿势一些小细节平时我们通过POST方式上传数据时,enctype是application/x-www-form-urlencode,而在文件上传时,是multipart/form-data上传的文件会存在超全局变量$_FILES里面上传的文件会先存放在临时目录里面,如果不进行后续的存储操作就会被清除存放文件的函数为move_upload_
- 字节的面试,感觉还挺简单的~
go后端面试问题面试字节跳动
今天分享的是训练营的朋友在字节跳动的面试,新鲜出炉的还热乎着呢。题目都挺简单的,但是他的面试体验不太好,因为面试官问了两个类似的问题,感觉有点不认真。下面是面试的内容:面经详解简单介绍下你的项目介绍下教育平台考试模块的业务.包括题目的读写试卷的生成创建之后,试题如何存储试卷如何分发给考生考生如何提交试卷,你们如何收集试卷结果最后怎么判题以下是对每个问题的回答:前端接口使用restful格式,pos
- 非凸科技荣登脉脉2024“年度职得去雇主”榜单
招聘
近日,2024脉脉MAX年度职场力量盛典暨年度“职得去”公司颁奖典礼在深圳举行,非凸科技受邀出席盛会并荣登脉脉2024“年度职得去雇主”榜单。本届评选依据脉脉独有的“雇主指数”以及专家评审意见综合评选而出,综合考量了企业在脉脉社区广场、同事圈、行业圈等多个频道口碑,并基于职场大数据训练的专属大模型,客观反映企业在职场人心中的口碑。非凸科技获此殊荣,也意味着在发展前景、工作氛围、薪酬福利等方面极具竞
- yolov5 解决:Traceback (most recent call last)
南商
YOLO深度学习
运行train.py程序后训练之后,到最后验证的那一步报一个线程异常的错误原因:pillow版本太高了,把pillow降级就行了pillow官网上的python对应版本在conda中,您可以安装pillow的任何可用版本。要查看可用的pillow版本,您可以使用以下命令:condasearchpillow这将列出所有可用的pillow版本。然后,您可以使用以下命令安装您选择的版本:condains
- 二、机器学习模型评估与选择
没见过西瓜嘛
机器学习学习笔记机器学习人工智能数据分析
机器学习模型评估与选择学习笔记一、核心概念1.1经验误差与过拟合误差相关定义错误率与精度:分类错误样本数占样本总数比例为错误率E=a/mE=a/mE=a/m,精度=1-错误率。训练误差与泛化误差:学习器在训练集上误差为训练误差(经验误差),在新样本上误差为泛化误差,泛化误差越小越好。过拟合与欠拟合过拟合:学习器把训练样本学得“太好”,将训练样本特点当作所有样本一般性质,导致泛化性能下降。欠拟合:学
- AI语言模型竞争加剧:新秀崛起 格局生变
XianxinMao
人工智能语言模型自然语言处理
标题:AI语言模型竞争加剧:新秀崛起格局生变文章信息摘要:AI语言模型领域呈现加速发展和分化态势。在LMSYS排行榜上,Claude3Opus超越GPT-4Turbo,DBRX超越Mixtral成为最佳开源模型,显示领先位置更替频繁。开源与闭源模型形成差异化发展路径:开源模型注重效率和架构创新,闭源API模型专注高端性能。模型训练成本呈现类摩尔定律式下降,每年降低75%。MoE架构在计算效率和性能
- 深度学习——模型过拟合和欠拟合的原因及解决方法
发呆小天才O.o
深度学习深度学习人工智能
一、定义1.过拟合(Overfitting)过拟合是指模型在训练数据上表现非常好,但在测试数据或新的数据上表现很差的现象。模型过度地学习了训练数据中的细节和噪声,以至于它无法很好地泛化到未见过的数据。例如,在一个图像分类任务中,过拟合的模型可能对训练集中的每一张图像的特定细节(如某张猫图片背景中的一个小污点)都学习得过于精细,以至于在测试集中,只要图像背景稍有不同,就无法正确分类。2.欠拟合(Un
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- PAT (Basic Level) Practice 乙级1031-1040
今天_也很困
算法
制作不易,大家的点赞和关注就是我更新的动力!由于这些题全是大一寒假刷的,部分还是c语言,部分的解题方法比较复杂,希望大家体谅。有问题欢迎大家在评论区讨论,有不足也请大家指出,谢谢大家!温馨提示:可以点目录跳转到相应题目哦。1031查验身份证分数15作者CHEN,Yue单位浙江大学一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下:首先对前17位数字加权求和,
- 基于 PyTorch 的深度学习模型开发实战
一ge科研小菜鸡
人工智能深度学习
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域,凭借其强大的特征学习能力,成为人工智能的核心技术之一。PyTorch作为当前流行的深度学习框架,提供了灵活的张量操作和动态计算图,便于模型的快速开发和调试。本教程将通过一个完整的深度学习模型开发流程,从数据预处理、模型构建、训练与优化、评估以及部署,帮助读者深入理解深度学习的关键技术
- yolo系列训练从本机挪到服务器中的报错:modulenotfounderror:numpy._core
m0_57663261
YOLO服务器运维
记录一下就是我本身在本机跑起来能训练了,把文件拷贝到服务器中环境跑的时候,出现了报错modulenotfounderror:numpy._core我上网搜的好些说numpy有问题需要重新下载因为本机和服务器已有环境中的numpy版本不同,所以出现此报错但或许不用!我借鉴了ModuleNotFoundError:Nomodulenamed‘numpy._core‘_modulenotfounderr
- 利用MMDetection进行模型微调和权重初始化
MickeyCV
目标检测深度学习目标检测计算机视觉python
目录模型微调修改第一处:更少的训练回合Epoch修改第二处:更小的学习率LearningRate修改第三处:使用预训练模型权重初始化实际使用案例init_cfg的具体使用规则初始化器配置汇总本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。模型微调在COCO数据集上预训练的检测器可以作为其他数据集优质的预训练模型。微调超参数与默认的训练策略不同。它通常需要更小的学习率和
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro