Spark所有的任务,都是由Spark-submit来提交的。所以我们从这个类看起。
override def main(args: Array[String]): Unit = {
//配置启动参数
val appArgs = new SparkSubmitArguments(args)
//是否打印参数,我们不用在意这个
if (appArgs.verbose) {
printStream.println(appArgs)
}
//配置任务类型,默认是Submit,为什么后面会讲
appArgs.action match {
case SparkSubmitAction.SUBMIT => submit(appArgs)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
}
}
在这个类中,初始化了很多我们的启动参数,比如下面这些熟悉的
var master: String = null
var deployMode: String = null
var executorMemory: String = null
var executorCores: String = null
var totalExecutorCores: String = null
其中为这些属性赋值的是下面这个代码块
// Set parameters from command line arguments
// 解析命令行中传出的参数
try {
parse(args.asJava)
} catch {
case e: IllegalArgumentException =>
SparkSubmit.printErrorAndExit(e.getMessage())
}
parse调用handle(只截取了一部分)
override protected def handle(opt: String, value: String): Boolean = {
opt match {
case NAME =>
name = value
case MASTER =>
master = value
case CLASS =>
mainClass = value
case DEPLOY_MODE =>
if (value != "client" && value != "cluster") {
SparkSubmit.printErrorAndExit("--deploy-mode must be either \"client\" or \"cluster\"")
}
deployMode = value
case NUM_EXECUTORS =>
numExecutors = value
case TOTAL_EXECUTOR_CORES =>
totalExecutorCores = value
当初我们也有一些不是命令行传入的参数,比如配置文件。就会调用loadEnvironmentArguments来加载
//大概就是下面这些
master = Option(master)
.orElse(sparkProperties.get("spark.master"))
.orElse(env.get("MASTER"))
.orNull
driverExtraClassPath = Option(driverExtraClassPath)
.orElse(sparkProperties.get("spark.driver.extraClassPath"))
.orNull
driverExtraJavaOptions = Option(driverExtraJavaOptions)
.orElse(sparkProperties.get("spark.driver.extraJavaOptions"))
.orNull
driverExtraLibraryPath = Option(driverExtraLibraryPath)
.orElse(sparkProperties.get("spark.driver.extraLibraryPath"))
.orNull
driverMemory = Option(driverMemory)
.orElse(sparkProperties.get("spark.driver.memory"))
.orElse(env.get("SPARK_DRIVER_MEMORY"))
.orNull
driverCores = Option(driverCores)
.orElse(sparkProperties.get("spark.driver.cores"))
.orNull
//还会配置这样一些东西
// Global defaults. These should be keep to minimum to avoid confusing behavior.
master = Option(master).getOrElse("local[*]") //本地并行度
// In YARN mode, app name can be set via SPARK_YARN_APP_NAME (see SPARK-5222)
if (master.startsWith("yarn")) {
name = Option(name).orElse(env.get("SPARK_YARN_APP_NAME")).orNull
}
// Set name from main class if not given
name = Option(name).orElse(Option(mainClass)).orNull
if (name == null && primaryResource != null) {
name = Utils.stripDirectory(primaryResource)
}
// Action should be SUBMIT unless otherwise specified
// 提交类型如果没设定,就默认Submit
action = Option(action).getOrElse(SUBMIT)
至次启动参数都会装配好,然后回到SparkSubmit中
appArgs.action match {
case SparkSubmitAction.SUBMIT => submit(appArgs)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
}
进入Submit方法
@tailrec
private def submit(args: SparkSubmitArguments): Unit = {
val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args) //准备运行环境
def doRunMain(): Unit = {
// 1. 普通的启动
runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
// 2. isStandaloneCluster
runMain()
// 3. In all other modes, just run the main class as prepared
doRunMain()
}
}
由于生产模式下一般都是yarn-cluster 我们就先只关注这个模式
// In yarn-cluster mode, use yarn.Client as a wrapper around the user class
// 在 yarn集群模式下,Clinet只是一个我们主类(我们自己写的Job)的包装器
if (isYarnCluster) {
childMainClass = "org.apache.spark.deploy.yarn.Client"
}
mainClass = Utils.classForName(childMainClass) // 反射加载运行的类
val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass) //获得运行的类的main方法
mainMethod.invoke(null, childArgs.toArray) // 反射调用
这时候我们知道我们的主类是**“org.apache.spark.deploy.yarn.Client”**
所以我们看看它的main方法
private object Client extends Logging {
def main(argStrings: Array[String]) {
System.setProperty("SPARK_YARN_MODE", "true")
val sparkConf = new SparkConf
// SparkSubmit would use yarn cache to distribute files & jars in yarn mode,
// so remove them from sparkConf here for yarn mode.
sparkConf.remove("spark.jars")
sparkConf.remove("spark.files")
val args = new ClientArguments(argStrings)
new Client(args, sparkConf).run()
}
ClientArguments()里面配置了–jar --class这些基本信息。这就体现了实际到时候调用的是我们提交的jar包,这个Client只是一个包装器(装饰者)
// 1. 创建YarnClient
private val yarnClient = YarnClient.createYarnClient
public static YarnClient createYarnClient() {
YarnClient client = new YarnClientImpl();
return client;
}
// 2. 与yarn集群连接的配置信息
protected ApplicationClientProtocol rmClient;
protected InetSocketAddress rmAddress;
protected long statePollIntervalMillis;
private static final String ROOT = "root";
public YarnClientImpl() {
super(YarnClientImpl.class.getName());
}
def run(): Unit = {
this.appId = submitApplication() //提交应用了,并获得全局唯一的Appid
}
def submitApplication(): ApplicationId = {
var appId: ApplicationId = null
// 启动YarnClient的后台,用来获取任务执行的状态
launcherBackend.connect()
// Setup the credentials before doing anything else,
// so we have don't have issues at any point.
// 1. 启动与Yarn集群的连接了
setupCredentials()
yarnClient.init(yarnConf)
yarnClient.start()
// 2. 新建任务
val newApp = yarnClient.createApplication()
val newAppResponse = newApp.getNewApplicationResponse()
appId = newAppResponse.getApplicationId()
new CallerContext("CLIENT", sparkConf.get(APP_CALLER_CONTEXT),
Option(appId.toString)).setCurrentContext()
// Verify whether the cluster has enough resources for our AM
verifyClusterResources(newAppResponse)
// Set up the appropriate contexts to launch our AM
// 3. 创建我们的应用
// containerContext 封装了我们任务运行的指令(jvm运行指令)
//if (isClusterMode) {
// 集群模式起 ApplicationMaster
// Utils.classForName("org.apache.spark.deploy.yarn.ApplicationMaster").getName
// }else {
// 客户端模式起 ExecutorLauncher
// Utils.classForName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName
// }
//结果就是 bin/java org.apache.spark.deploy.yarn.ApplicationMaster
//表示提交以后要创建ApplicationMaster进程
val containerContext = createContainerLaunchContext(newAppResponse)
// appContext
val appContext = createApplicationSubmissionContext(newApp, containerContext)
// Finally, submit and monitor the application
logInfo(s"Submitting application $appId to ResourceManager")
// 4. 提交任务去yarn集群执行了
yarnClient.submitApplication(appContext)
launcherBackend.setAppId(appId.toString)
reportLauncherState(SparkAppHandle.State.SUBMITTED)
appId
}
def main(args: Array[String]): Unit = {
//和之前套路一样,封装我们的命令行参数。
val amArgs = new ApplicationMasterArguments(args)
SparkHadoopUtil.get.runAsSparkUser { () =>
// 创建ApplicationMaster
// 创建YarnRMClient ResourceManager连接对象
master = new ApplicationMaster(amArgs, new YarnRMClient)
//调用run方法,run方法执行以后程序退出
System.exit(master.run())
}
}
rpcEnv //消息通信
amEndpoint //Application终端
runDriver(securityMgr)
↓
userClassThread = startUserApplication()
↓
# 获取用户提交的类的main方法
val mainMethod = userClassLoader.loadClass(args.userClass)
.getMethod("main", classOf[Array[String]])
val userThread = new Thread {
mainMethod.invoke(null, userArgs.toArray)
}
userThread.setContextClassLoader(userClassLoader)
# 通过线程执行main方法,并命名为Driver
# 这里就体现了为什么我们总把我们写的Job叫Driver,因为底层它被反射调用并通过一个线程来运行
# 而且线程的名字叫Driver
# 这里还可以看出,我们yarn集群模式下,Driver是运行在ApplicationMaster上的
userThread.setName("Driver")
userThread.start()
↓
registerAM(sc.getConf, rpcEnv, driverRef, sc.ui.map(_.webUrl), securityMgr)
#向ApplicationMaster注册,可以看出是通过rpc交互的
↓
# 这个Client是client: YarnRMClient ResourceManager的客户端
#所以这里是AM向RM注册来申请资源的
allocator = client.register
# 获得资源,并分配
allocator.allocateResources()
↓
#获得Container(执行任务的容器)
val allocatedContainers = allocateResponse.getAllocatedContainers()
#规划容器的位置。
handleAllocatedContainers(allocatedContainers.asScala)
↓
#运行Container
runAllocatedContainers(containersToUse)
↓
#从线程池里拿一个线程并执行
launcherPool.execute
#执行的是一个ExecutorRunnable
new ExecutorRunnable.run()
↓
#建立rpc交互对象
var rpc: YarnRPC = YarnRPC.create(conf)
#跟NodeManager做交互
var nmClient: NMClient = _
#与NM获得连接后
nmClient = NMClient.createNMClient()
nmClient.init(conf)
nmClient.start()
#启动container
startContainer()
↓
#准备启动指令
#这里面实际就是封装的Container上JVM启动的参数
#启动一个特殊的进程(类)
#org.apache.spark.executor.CoarseGrainedExecutorBackend
prepareCommand()
↓
#表示,如果我们job的main方法不执行完,当前线程就阻塞住
userClassThread.join() (这个方法在runDriver里面)
run(driverUrl, executorId, hostname, cores, appId, workerUrl, userClassPath)
val env = SparkEnv.createExecutorEnv(
driverConf, executorId, hostname, port, cores, cfg.ioEncryptionKey, isLocal = false)
//new CoarseGrainedExecutorBackend对象,启动Executor计算
env.rpcEnv.setupEndpoint("Executor", new CoarseGrainedExecutorBackend(
env.rpcEnv, driverUrl, executorId, hostname, cores, userClassPath, env))
workerUrl.foreach { url =>
env.rpcEnv.setupEndpoint("WorkerWatcher", new WorkerWatcher(env.rpcEnv, url))
}
def onstart(){
rpcEnv.asyncSetupEndpointRefByURI(driverUrl).flatMap { ref =>
// This is a very fast action so we can use "ThreadUtils.sameThread"
driver = Some(ref)
// 向Driver反向注册 RegisterExecutor
ref.ask[Boolean](RegisterExecutor(executorId, self, hostname, cores, extractLogUrls))
}(ThreadUtils.sameThread).onComplete {
// This is a very fast action so we can use "ThreadUtils.sameThread"
case Success(msg) =>
// Always receive `true`. Just ignore it
case Failure(e) =>
exitExecutor(1, s"Cannot register with driver: $driverUrl", e, notifyDriver = false)
}(ThreadUtils.sameThread)
}
receive(){
//反向注册收到回复后,启动Executor
case RegisteredExecutor =>
executor = new Executor(executorId, hostname, env, userClassPath,
//收到启动Task的回复后,启动Executor计算
case LaunchTask(data) =>
if (executor == null) {
exitExecutor(1, "Received LaunchTask command but executor was null")
} else {
//计算
executor.launchTask(this, taskDesc)
}
}