- 告别内存焦虑!用Dask打开Python大数据并行计算的“任意门“
小张在编程
python大数据开发语言
引言当你在Jupyter里用Pandas读取20GB的CSV文件,看到内存占用率从10%飙升到90%,最后弹出"MemoryError"时;当你想对亿级数据做分组聚合,却发现单线程计算要等上半小时——这些场景是不是像极了用小推车搬运万吨货物?Python生态中,Dask库就像一台"并行计算推土机",能把大数据拆分成小块并行处理,让你的普通电脑也能拥有分布式计算的能力。本文将从原理到实战,带你掌握这
- 基于生成对抗网络增强主动学习的超高温陶瓷硬度优化
神经网络15044
深度学习算法仿真模型生成对抗网络学习人工智能
复现论文:基于生成对抗网络增强主动学习的超高温陶瓷硬度优化我将使用Python复现这篇关于使用生成对抗网络(GAN)增强主动学习来优化超高温陶瓷(UHTC)硬度的研究论文。以下是完整的实现代码和解释。1.环境准备和数据加载首先,我们需要准备必要的Python库并加载数据。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimpor
- Conda 核心命令快速查阅表
拉拉拉拉拉拉拉马
conda
本表旨在提供一个简洁、高效的Conda命令参考,专注于最常用功能的快速查找。1.环境管理(EnvironmentManagement)功能(Function)命令(Command)示例(Example)创建新环境condacreate-n[packages...]condacreate-nmyenvpython=3.9pandas激活环境condaactivatecondaactivatemyen
- Python 数据分析与可视化:从基础到进阶的技术实现与优化策略
女码农的重启
python数据分析开发语言
数据分析与可视化是数据科学领域的核心技能,Python凭借其丰富的库生态和灵活的编程范式,成为该领域的首选工具。本文将系统讲解Python数据分析与可视化的技术栈实现,从基础操作到性能优化,结合实战场景提供可复用的解决方案。数据分析核心库技术解析Pandas数据处理引擎原理Pandas作为数据分析的基石,其核心优势在于基于NumPy的矢量运算和高效的内存管理。与Excel的单元格级操作不同,Pan
- Python - 数据分析三剑客之Pandas
MinggeQingchun
PythonPythonPandas
阅读前可参考NumPy文章https://blog.csdn.net/MinggeQingchun/article/details/148253682https://blog.csdn.net/MinggeQingchun/article/details/148253682Pandas是Python中一个强大的开源数据分析库,专门用于处理结构化数据(如表格、时间序列等),其核心数据结构为Seri
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- 24GB GPU 中的 DeepSeek R1:Unsloth AI 针对 671B 参数模型进行动态量化
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseekollama
简介最初的DeepSeekR1是一个拥有6710亿个参数的语言模型,UnslothAI团队对其进行了动态量化,将模型大小减少了80%(从720GB减少到131GB),同时保持了强大的性能。当添加模型卸载功能时,该模型可以在24GBVRAM下以低令牌/秒的推理速度运行。推荐文章《本地构建AI智能分析助手之01快速安装,使用PandasAI和Ollama进行数据分析,用自然语言向你公司的数据提问为决策
- Python Day9
@浙大疏锦行PythonDay9.内容:热力图的绘制enumerate()方法子图的绘制代码:list_nums=[1,2,3,4,5,6]forindex,valinenumerate(list_nums):print(f"index={index},val={val}")forvalinlist_nums:print(f"val={val}")importpandasaspdimportmat
- python-pandas数据分析+案例分析
文章目录前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比2.车辆销售规模及环比、不同价位车销量及环比3.各车系、厂商、品牌车销量及环比,市占率及变化趋势4.品牌、车类、车型、级别的各top销量二、地质灾害航空公司客户价值分析1.原始数据存在少量的缺失值和异常值前言一、汽车销售数据可视化分析1.各年度汽车总销量及环比,各车类、级别车辆销量及环比importnump
- pandas销售数据分析
pandas销售数据分析数据保存在data目录消费者数据:customers.csv商品数据:products.csv交易数据:transactions.csvcustomers.csv数据结构:字段描述customer_id客户IDgender性别age年龄region地区membership_date会员日期products.csv数据结构:字段描述product_id产品IDcategory
- 基于Python的旅游数据可视化应用
摘要本文详细介绍了一个功能完善的基于Python语言开发的旅游行业数据可视化分析应用系统。该系统采用Pandas这一强大的数据处理库进行数据清洗、转换和预处理工作,确保数据质量可靠。在可视化展示方面,系统整合了Matplotlib和Seaborn两大主流可视化库,通过丰富的图表类型直观呈现数据分析结果。特别值得一提的是,所有可视化图表均采用统一的绿色主题配色方案,这种设计不仅美观大方,更能突出体现
- Pandas 学习教程
_pass_
Data-Alaysispandas信息可视化
目录定义基本操作一维数组操作二维数组操作数据选择过滤数据处理数据清洗数据转换数据分析排序分组聚合数据透视表高级操作合并数据时间序列处理自定义函数调用数据可视化集成数据导出和导入大数据分块处理定义全称:'paneldata'and'pythondataanalysis'Analy:Series(一维数据)、DataFrame(二维数据)主要应用:数据清洗:处理缺失数据、重复数据等数据转换:改变数据的
- 【Python基础】最强 Pandas 平替 -- Polars
程序媛阿紫
pythonpandas开发语言
Polars是一个用于操作结构化数据的高性能DataFrame库,可以说是平替pandas最有潜质的包。Polars其核心部分是用Rust编写的,但该库也提供了Python接口。它的主要特点包括:快速:Polars是从零开始编写的,紧密与机器结合,没有外部依赖。I/O:对所有常见数据存储层提供一流支持:本地、云存储和数据库。易于使用:以原始意图编写查询。Polars在内部会使用其查询优化器确定执行
- pandas学习笔记
kara_486
pandas学习笔记
pandas是python中一个性能强大的数据处理库,能进行复杂的数据处理。pandas的数据结构分为三种类型,分别为series,DataFrame和index,对于初学者而言,series和DataFrame这两种结构最为重要。下面作者将重点介绍series和DataFrame这两部分。series的介绍series按照作者的目前的理解是pandas库中最基础的组成部分,seriers是由索引
- 使用 Python 和 Pandas 处理 Excel 数据:合并单元格示例
技术探索
1024程序员节
引言在数据处理过程中,我们经常会遇到需要从Excel文件中提取和处理数据的情况。本文将通过一个简单的示例,介绍如何使用Python的Pandas库来读取Excel文件,处理其中的合并单元格,并将结果输出到新的Excel文件中。(这里的合并是列1提取一个数据,列2提取两个数据进行合并)1.准备工作首先,请确保你的系统中已经安装了Pandas库。如果尚未安装,可以通过以下命令进行安装:pipinsta
- Python数据分析案例|从模拟数据到可视化:零售门店客流量差异分析全流程
1.依赖库导入importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdfrommatplotlibimportfont_managerfromdatetimeimportdatetimematplotlib.pyplot:用于绘制图表。numpy:numpy:pandas:虽然代码中未font_manager:设置datetime:生成
- 【动手学深度学习】4.10 实战Kaggle比赛:预测房价
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录4.10实战Kaggle比赛:预测房价1)数据预处理2)模型定义与训练3)模型评估与预测4)模型训练与预测提交5)示例超参数(可调)4.10实战Kaggle比赛:预测房价数据来源:Kaggle房价预测比赛.1)数据预处理读取数据importpandasaspdtrain_data=pd.read_csv('../data/kaggle_house_pred_train.csv')test_da
- Pandas 学习(数学建模篇)
停走的风
数学建模pandas学习
今天学习数学建模2023年C篇(228)优秀论文2023高教社杯全国大学生数学建模竞赛C题论文展示(C228)-2023C题论文-中国大学生在线一.pd.DataFramepd.DataFrame()是pandas库中用于创建二维表格数据结构(DataFrame)的核心函数。它的作用是将各种格式的数据(如字典、列表、Series等)转换为带有行索引和列标签的表格形式,便于数据处理和分析.impor
- kafka系列 ---安装kafka+SASL配置
心有栖
kafka专栏kafkajava
文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言这篇主要讲如何安装kafka+配置SASL安全验证,之前网上一些文章要么没有配置SASL,要么本身存在一些问题,这里主要把正确的配置方案放上来,后续会讲讲遇到的一些问题和该如何解决。一、安装kafka官网的quickstart有最新安装教程,想安装最新版可以去官网,目前我使用的是kafka2.6.0。这里的所有操作都是在
- 如何使用Python控制笔记本电脑屏幕亮度?
很酷的站长
编程笔记电脑python开发语言
Python已成为世界上最受欢迎的编程语言之一,这要归功于它的简单性、多功能性和广泛的应用程序。凭借其广泛的库和框架,Python可用于从Web开发到机器学习以及介于两者之间的任何内容。在Python中,最流行的数据分析和操作库之一是Pandas,它提供了处理表格数据的强大工具。在本教程中,我们将使用Python和屏幕亮度控制库来探索如何控制笔记本电脑屏幕亮度。我们将向您展示如何使用Python通
- 6.kaggle实战之房价预测
温柔济沧海
深度学习神经网络人工智能python深度学习
importhashlibimportosimporttarfileimportzipfileimportrequestsimportnumpyasnpimportpandasaspdimporttorchimportnumpyasnpfromtorchimportnnimportmatplotlib.pyplotaspltfromtorch.utils.dataimportDataLoader,
- AWS成本监控告警系统完整解析
ivwdcwso
运维与云原生awspythonCost云成本运维开发
完整代码展示#!/usr/bin/python3importboto3,json,requestsimportpandasaspdfromdatetimeimportdatetime,timedelta#创建CostExplorer客户端client=boto3.client('ce')
- Python Pandas库超详细教程:从入门到精通实战指南
stormsha
Pythonpythonpandas开发语言python3.11数据分析
欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:「stormsha的主页」,「stormsha的知识库」持续学习,不断总结,共同进步,为了踏实,做好当下事儿~非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。✨✨欢迎订阅本专栏✨✨TheStart点点关注,收藏不迷路文章目录Pyt
- Python数据可视化:使用Python创建令人惊艳的图表
master_chenchengg
pythonpythonPythonpython开发IT
Python数据可视化:使用Python创建令人惊艳的图表I.可视化的力量:为什么一张好图胜过千言万语II.工欲善其事必先利其器:选择合适的Python可视化库Matplotlib入门:打造你的第一张图表Seaborn的魅力:更美观、更统计学友好的绘图Plotly互动式图表:让你的数据动起来Bokeh与GeoPandas:探索地理空间数据的新维度III.从零开始:一步步教你构建基本图表散点图的艺术
- python中的函数:apply、map、reduce、lambda函数
一、apply函数定义:apply函数在Pandas库中函数,应用对象是DataFrame或Series的行或列上,并返回一个新的DataFrame或Series。主要有两方面的功能:一是直接对DataFrame或者Series应用函数,二是对pandas中的groupby之后的聚合对象apply函数DataFrame.apply(func,axis=0,broadcast=None,raw=Fa
- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- 两个场景的车辆相似度评估并画图(弗雷歇距离)
疑问:是否有必要normalize?(待解决)importmathimportnumpyasnpimportpandasaspdimporttorchfrommatplotlibimportpyplotaspltfromshapesimilarityimportshape_similarity,procrustes_normalize_curve,find_procrustes_rotation_
- 两步移动搜索法(2SFCA)python
我在北京coding
pythonpython开发语言
实现两步移动搜索法(Two-StepFloatingCatchmentAreaMethod,2SFCA)是一种广泛应用于地理信息系统(GIS)领域的方法,用于评估设施的空间可达性。以下是基于Python和GeoPandas的一种实现方式。准备工作为了实现2SFCA方法,需要准备以下数据集:供给点:表示服务提供方的位置及其服务能力。需求点:表示潜在使用者的位置及其需求量。距离矩阵:描述供给点与需求点
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR