- 【人工智能数学基础篇】线性代数基础学习:深入解读矩阵及其运算
猿享天开
人工智能基础知识学习线性代数人工智能学习矩阵及其运算
矩阵及其运算:人工智能入门数学基础的深入解读引言线性代数是人工智能(AI)和机器学习的数学基础,而矩阵作为其核心概念之一,承担着数据表示、变换和运算的重任。矩阵不仅在数据科学中广泛应用,更是神经网络、图像处理、自然语言处理等领域的重要工具。本文将深入探讨矩阵的基本概念、性质及其运算,通过详细的数学公式、推导过程和代码示例,帮助读者更好地理解矩阵在AI中的应用。第一章:矩阵的基本概念1.1矩阵的定义
- 第5关:线性代数
-阿呆-
#numpy数组的高级操作线性代数矩阵python
任务描述本关任务:编写一个能求解线性方程的函数。相关知识为了完成本关任务,你需要掌握:如何使用numpy进行矩阵运算点积和matmul的区别。numpy的线性代数线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,一般我们使用*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。因此numpy提供了线性代数函数库linalg,该库包含了线性代数所需的所有
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- 01 目录-具身智能学习规划
天机️灵韵
具身智能人工智能具身智能机器人生物信息学
具身智能(EmbodiedIntelligence)强调智能体通过身体与环境的动态交互实现学习和决策,是人工智能、机器人学、认知科学和神经科学交叉的前沿领域。其核心在于打破传统AI的“离身认知”,将智能与物理实体、感知-运动系统紧密结合。以下是具身智能学习规划的框架:一、基础理论储备数学与编程基础数学:概率统计、线性代数、微积分、优化理论、微分几何(运动规划)。编程:Python(主流工具链)、C
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- 初学者推荐学习AI的路径
ProgramHan
学习人工智能
学习人工智能的路径可以分为基础知识、编程技能、机器学习、深度学习、数据处理与可视化、自然语言处理(NLP)、计算机视觉(CV)、强化学习、实践项目和持续学习几个阶段。以下是一个简要的路径:1️⃣基础知识数学基础(线性代数、微积分、概率统计)编程基础(Python/R等语言)算法与数据结构2️⃣机器学习基础理解监督学习(如回归、分类)、无监督学习(如聚类、PCA)掌握机器学习库(如scikit-le
- 奇异值分解求线性方程组的最小二乘解
果壳中的robot
计算机视觉线性代数算法矩阵
线性方程组一般考虑两类:非齐次线性方程组:Ax=b齐次线性方程组:Ax=0A是m*n矩阵,x是n*1的向量,b是m*1的向量。此类问题可以很方便地采用SVD奇异值分解来求解。一.讨论基于线性代数的解析解关于线性方程组的解析解存在性的讨论在之前的博客中已经介绍,主要基于向量组的线性相关性理论。链接为:【线性代数】齐次与非齐次线性方程组有解的条件。主要结论为:对于齐次线性方程组Ax=0:Ax=0有非零
- 线性代数导引:实系数和复系数不可约多项式
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
线性代数导引:实系数和复系数不可约多项式关键词:线性代数、实系数多项式、复系数多项式、不可约多项式、代数学基本定理、伽罗瓦理论1.背景介绍1.1问题的由来多项式是数学中一个基础而重要的概念,它不仅在代数学中有着广泛的应用,在几何、物理等领域也有着重要的地位。而研究多项式的可约性,尤其是实系数和复系数多项式的不可约性,对于理解多项式的本质特征具有重要意义。1.2研究现状目前对于实系数和复系数多项式的
- 线代[8]|北大丘维声教授《怎样学习线性代数?》(红色字体为博主注释)
汉密士20240101
线性代数【精品】丘维声学习线性代数高等代数
文章目录说明一、线性代数的内容简介二、学习线性代数的用处三、线性代数的特点四、学习线性代数的方法五、更新时间记录说明文章中红色字体为博主敲录完丘教授这篇文章后所加,刷到这篇文章的读者在首次阅读应当跳过红色字体,先通读一读文章全文,一遍,两遍,甚至是三遍以上。该篇文章为大学工科专业线性代数课程脉络的梳理性质文章,仅仅到“二次型”为止与考研大纲相同,并未涉及“哈密顿—凯莱定理、奇异值分解(SVD)、广
- 【深度学习】矩阵的理解与应用
大数据追光猿
深度学习矩阵算法线性代数机器学习python深度学习
一、矩阵基础知识1.什么是矩阵?矩阵是一个数学概念,通常表示为一个二维数组,它由行和列组成,用于存储数值数据。矩阵是线性代数的基本工具之一,广泛应用于数学、物理学、工程学、计算机科学、机器学习和数据分析等领域。1.1矩阵的表示一个矩阵通常用大写字母来表示,例如AAA,而矩阵中的元素则用小写字母来表示,例如aija_{ij}aij,其中iii表示行索引,jjj表示列索引。本质:矩阵是二维的张量矩阵的
- 线代好学吗?
Vacant Seat
快期末考了,这两天的学期效率比在家高了几倍,这一周都在学习线代,在宿舍,自习室,图书馆都拿着一本太原理工大学线性代数第二版在那里翻,感觉线性代数这个东西挺有意思,挺灵活的,在这里,我总结一下一点关于线性代数的知识,也有一些是我之前入的坑吧,感觉有用的就点个赞吧!!!求四阶行列式说到这里我感觉还挺搞笑的,我之前一直以为行列式的计算都是按照二阶,三阶行列式那样对角线上的元素相乘,然后判断符号相加,就是
- DeepSeek 学习路线图
CarlowZJ
学习deepseek
以下是基于最新搜索结果整理的DeepSeek学习路线图,涵盖从基础到高级的系统学习路径,帮助你全面掌握DeepSeek的使用和应用开发。一、基础知识与预备技能1.数学基础线性代数:掌握矩阵运算和向量空间,这是深度学习的核心。概率统计:理解贝叶斯理论和概率分布,用于模型训练和推理。微积分:了解优化算法中的梯度下降等概念。2.编程基础Python:掌握Python编程,这是深度学习和AI开发的主要语言
- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- linux第八章 git连接本地仓库和gitee
ᰔᩚ. 一怀明月ꦿ
linuxgitlinux
博主主页:@ᰔᩚ.一怀明月ꦿ❤️专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章,「初学」C++,linux座右铭:“不要等到什么都没有了,才下定决心去做”大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点目录gitgit的作用git的知识点linux上远程链接gitee第一步:linux中安装git第二步:新建git目录第三步:链接仓库1)在gitee中找到仓库的HTTPS2)
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 线性代数导引:张量与张量空间
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
线性代数,张量,张量空间,深度学习,机器学习,人工智能1.背景介绍在现代人工智能领域,深度学习和机器学习算法的蓬勃发展,使得对数据的高效处理和表示能力提出了更高的要求。线性代数作为数学基础,为理解和构建这些算法提供了坚实的基础。而张量,作为一种高维数组的表示形式,成为了深度学习和机器学习的核心数据结构。本篇文章将从线性代数的角度出发,深入探讨张量与张量空间的概念,并阐述其在深度学习和机器学习中的重
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- Matlab基础入门手册(第三章:运算符)
freexyn
matlab线性代数矩阵
目录第三章运算符1.16算术运算1.17算术常用函数1.18逻辑运算1.19关系运算1.20运算符的优先级1.21兼容性第三章运算符1.16算术运算1.算术运算(arithmetic)主要指加减乘除、幂和舍入等运算2.说明Matlab有两种不同类型的算术运算:数组运算和矩阵运算数组运算基于元素的运算,支持任意向量、矩阵和多维数组矩阵运算遵循线性代数的规则字符(.)区分矩阵运算和数组运算数组运算和矩
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 2.【线性代数】——矩阵消元
sda42342342423
math线性代数矩阵
二矩阵消元1.消元法2.单行或者单列的矩阵乘法2.1单行矩阵乘法2.2单列矩阵乘法3.用矩阵记录消元过程(初等矩阵)【行的线性组合(数乘和加法)】3.1row2-3row1的矩阵描述3.2row3-2row2的矩阵描述3.3矩阵乘法的性质4.用矩阵记录消元过程(置换矩阵)行列交换4.1行交换4.1列交换5.逆矩阵1.消元法求解方程组{x+2y+z=23x+8y+z=124y+z=2\begin{c
- 《麻省理工公开课:线性代数》 中文学习笔记
派森先生
人工智能线性代数学习笔记
《麻省理工公开课:线性代数》是麻省理工公开课中广为流传的一门好课。这是我学习MIT线性代数课程LinearAlgebra的中文参考学习笔记。希望在自己学习的同时,也对大家学习有所帮助。笔记特点:笔记与原课程视频一一对应,可以帮助大家一边听课一边理解。通过图解来使得笔记尽量通俗易懂课程视频共35节,单个视频平均时长不超过60分钟,预计一个月可以学习完毕。本笔记所用资料,图片等,如侵犯了您的图片版权请
- 高等代数笔记5:线性变换
p_wh
高等代数
线性映射的定义与性质线性映射的定义数学研究的主题是空间与变换,对于代数学而言,空间指的是赋予了某种运算结构的集合,变换则是空间到空间的映射。线性代数则是研究线性空间及其上的映射。但是,研究的对象不是所有的映射,而是特殊的一类映射,这类映射和线性运算紧密联系,称为线性映射。定义5.1V1,V2V_1,V_2V1,V2是KKK的两个线性空间,f:V1→V2f:V_1\toV_2f:V1→V2是V1V_
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- ZigBee3-1 练习 系统睡眠唤醒
周周周诶。
ZigBee练习stm32物联网zigbee嵌入式
ZigBee3-1系统睡眠唤醒3-1系统睡眠唤醒--中断唤醒原代码分析修改后代码3-2系统睡眠唤醒—定时器唤醒原代码分析:修改后代码理论学习:无线传感网络--ZigBee3-1系统睡眠唤醒3-1系统睡眠唤醒–中断唤醒要求:在《3-1系统睡眠唤醒–中断唤醒》实验中,系统LED灯闪烁3次以后进入PM3模式,可以由用户通过按键唤醒。要求修改代码,尝试进入PM2模式,并通过按键唤醒原代码/********
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- 【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
是Yu欸
数学建模数据挖掘Paddlepaddle线性代数python机器学习人工智能人脸识别数学建模
【Paddle】PCA线性代数基础及领域应用写在最前面一、PCA线性代数基础1.PCA的算法原理2.PCA的线性代数基础2.1标准差StandardDeviation2.2方差Variance2.3协方差Covariance2.4协方差矩阵TheCovarianceMatrix2.5paddle代码demo①:计算协方差矩阵2.6特征向量Eigenvectors标准化处理2.7paddle代码de
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开