给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入:[10,9,2,5,3,7,101,18]
输出: 4 解释: 最长的上升子序列是[2,3,7,101],
它的长度是4
。
说明:
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
思路:
这道题参考了博文的思路
https://www.cnblogs.com/grandyang/p/4938187.html
时间复杂度O(nlogn),自己没想出来,而且感觉太复杂。具体思路如下:
维护一个递增数组dp,如果当前元素比dp的第一个元素小,就把第一个元素替换掉(覆盖第一个元素),如果比最后一个元素大,就插入到dp的最后(不覆盖最后一个元素),如果大小位于第一个元素和最后一个元素中,就通过二分法找到第一个大于该元素的位置,替换掉原始元素(覆盖)。
代码如下:
int lengthOfLIS(vector& nums) {
vector dp;
if (nums.size() <= 0) {
return 0;
}
dp.push_back(nums[0]);
for (int i = 1; i < nums.size(); i++) {
if (nums[i] < dp[0]) {
dp[0] = nums[i];
continue;
}
if (nums[i] > dp[dp.size() - 1]) {
dp.push_back(nums[i]);
continue;
}
int left = 0;
int right = dp.size()-1;
while (left < right) {
int mid = left + (right - left) / 2;
if (dp[mid] < nums[i]) {
left = mid + 1;
}
else {
right = mid;
}
}
dp[right] = nums[i];
}
return dp.size();
}
思路2:采用dp来做,通过维护一个一维数组dp来做,dp[i]表示到第i个元素的最长子序列的个数,那么dp[i+1]的值等于遍历[0,j]的元素(0<=j<=i),如果对应的nums[j] 如果遍历完j都没有元素满足nums[j] 参考代码: 思路三:这道题还可以用二分查找+动态规划来做,声明一个一维的数组(初始化为空)res,其中res表示截止到下标i时,当前存的可能的最长递增子序列,注意这时res中不一定是递增的子序列,但是res的size就是当前最优的递增子序列的长度。 示例如下: {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15} 如图所示,每次我们都会维护多个队列,这样每个队列就是有序的,但是其实没必要这么复杂,我们只需要维护一个队列res即可。只需要遍历一遍原数组nums,每次取出当前值n=nums[i],判断在res中第一个大于等于n的下标,覆盖下标对应的元素,如果没找到,证明比所有res的元素都大,那么在res的尾部加上n元素,最后返回res.size()即可。 参考代码(时间复杂度nlogn): dp[i] = max(dp[j] + 1, dp[i]);
int lengthOfLIS(vector
A[0] = 0. Case 1. There are no active lists, create one.
0.
-----------------------------------------------------------------------------
A[1] = 8. Case 2. Clone and extend.
0.
0, 8.
-----------------------------------------------------------------------------
A[2] = 4. Case 3. Clone, extend and discard.
0.
0, 4.
0, 8. Discarded
-----------------------------------------------------------------------------
A[3] = 12. Case 2. Clone and extend.
0.
0, 4.
0, 4, 12.
-----------------------------------------------------------------------------
A[4] = 2. Case 3. Clone, extend and discard.
0.
0, 2.
0, 4. Discarded.
0, 4, 12.
-----------------------------------------------------------------------------
A[5] = 10. Case 3. Clone, extend and discard.
0.
0, 2.
0, 2, 10.
0, 4, 12. Discarded.
-----------------------------------------------------------------------------
A[6] = 6. Case 3. Clone, extend and discard.
0.
0, 2.
0, 2, 6.
0, 2, 10. Discarded.
-----------------------------------------------------------------------------
A[7] = 14. Case 2. Clone and extend.
0.
0, 2.
0, 2, 6.
0, 2, 6, 14.
-----------------------------------------------------------------------------
A[8] = 1. Case 3. Clone, extend and discard.
0.
0, 1.
0, 2. Discarded.
0, 2, 6.
0, 2, 6, 14.
-----------------------------------------------------------------------------
A[9] = 9. Case 3. Clone, extend and discard.
0.
0, 1.
0, 2, 6.
0, 2, 6, 9.
0, 2, 6, 14. Discarded.
-----------------------------------------------------------------------------
A[10] = 5. Case 3. Clone, extend and discard.
0.
0, 1.
0, 1, 5.
0, 2, 6. Discarded.
0, 2, 6, 9.
-----------------------------------------------------------------------------
A[11] = 13. Case 2. Clone and extend.
0.
0, 1.
0, 1, 5.
0, 2, 6, 9.
0, 2, 6, 9, 13.
-----------------------------------------------------------------------------
A[12] = 3. Case 3. Clone, extend and discard.
0.
0, 1.
0, 1, 3.
0, 1, 5. Discarded.
0, 2, 6, 9.
0, 2, 6, 9, 13.
-----------------------------------------------------------------------------
A[13] = 11. Case 3. Clone, extend and discard.
0.
0, 1.
0, 1, 3.
0, 2, 6, 9.
0, 2, 6, 9, 11.
0, 2, 6, 9, 13. Discarded.
-----------------------------------------------------------------------------
A[14] = 7. Case 3. Clone, extend and discard.
0.
0, 1.
0, 1, 3.
0, 1, 3, 7.
0, 2, 6, 9. Discarded.
0, 2, 6, 9, 11.
----------------------------------------------------------------------------
A[15] = 15. Case 2. Clone and extend.
0.
0, 1.
0, 1, 3.
0, 1, 3, 7.
0, 2, 6, 9, 11.
0, 2, 6, 9, 11, 15. <-- LIS List
----------------------------------------------------------------------------
class Solution {
public:
int lengthOfLIS(vector