- YeAudio音频工具的介绍和使用
夜雨飘零1
语音音视频语音识别pythonffmpeg
夜雨飘零音频工具这款Python音频处理工具功能强大,支持读取多种格式的音频文件。它不仅能够对音频进行裁剪、添加混响、添加噪声等多种处理操作,还广泛应用于语音识别、语音合成、声音分类以及声纹识别等多个项目领域。安装使用pip安装。pipinstallyeaudio-U-ihttps://pypi.tuna.tsinghua.edu.cn/simple(推荐)使用源码安装。gitclonehttps
- 音频播放器
最美下雨天
验证的例子:打印ffmpeg支持的所有解码器,解码音视频、字幕image.pngimage.png在声纹识别中,为了满足对不同采样率的要求,常需要对语音进行重采样。重采样即将原始的采样频率变换为新的采样频率以适应不同采样率的要求。image.pngimage.pngJNI在加载的时候会自动调用这个方法image.png什么是重采样呢?就是我们要播放的音频数据的编码格式不一样,比如说采样率、采样位数
- ABeam×StartUp丨ABeam旗下德硕管理咨询(深圳)新创部门拜访「声扬科技」,解密声音的秘密
陵门检录
科技
随着人工智能的快速发展,音频处理、语音分析、声纹识别等技术的应用也日益扩充至各个方面,这些技术不仅是前沿领域的高新科技,也与我们的生活息息相关。近日,ABeam旗下德硕管理咨询(深圳)有限公司(以下简称“ABeam-SZ”)新创部门一行拜访了深圳声扬科技有限公司(以下简称“声扬科技”),深入了解音频处理、语音分析和声纹识别技术的发展近况及在各行业的应用,在未来可行性等方面进行交流探讨,并结合ABe
- 2023年12月27日学习记录_加入噪声
郭小儒
每日学习总结学习python人工智能
目录1、今日计划学习内容2、今日学习内容1、addnoisetoaudioclipssignaltonoiseratio(SNR)加入additivewhitegaussiannoise(AWGN)加入realworldnoises2、使用kaggel上的一个小demo:CNN模型运行时出现的问题调整采样率时出现bug3、明确90dB下能否声纹识别4、流量预测3、实际完成的任务1、今日计划学习内容
- 声纹识别_加入噪声
郭小儒
声纹识别机器学习人工智能学习语音识别
目录1、addnoisetoaudioclipssignaltonoiseratio(SNR)2、加入additivewhitegaussiannoise(AWGN)1.howtogenerateAWGN2.AWGN的频率分析3.加入噪声3、加入realworldnoises1、addnoisetoaudioclips学习如何将噪声加入到audiodata中,后续可以将不同SNR的噪声加入原始信号
- 声纹识别资源汇总(不断更新)
郭小儒
声纹识别学习pandaspython语音识别深度学习机器翻译
目录一、任务说明二、指标三、声纹识别研究现状四、数据集开源(1)VoxCeleb:(2)WSJandLibriSpeechCorpus(3)VOiCESDataset(4)EnglishMulti-speakerCorpusforVoiceCloning五、开源代码1、Alize2、MSRIdentityToolkit3、d-vector4、LSTMwithGE2Eloss5、y-vector调研
- 2023年12月20日学习总结
郭小儒
学习数据库
今日todolist:学习kaggle中storesales中的dartforcasting大概搜集一个声纹识别的报告(老师给的新项目)学习时不刷手机okkkkkkkkkkkkkk开始目录1.时间序列预测-acompleteguide(1)时序预测有三条规则:(2)时序数据timeseriesdata的组成(3)分析的流程1.importlibraries2.导入数据并且初步查看数据3.EDA:e
- 基于d-vector的声纹识别(作为初学者的小总结)
郭小儒
声纹识别python人工智能
基于d-vector的声纹识别(作为初学者的小总结)——2023年12月22日目录基于d-vector的声纹识别(作为初学者的小总结:wink:)——2023年12月22日0、简要介绍1、数据data2、数据预处理3、数据增强dataaugmentation(1)增加白噪声addingwhitenoise(2)更改音高changingpitch(3)增加背景噪声4、创建模型0、简要介绍目的是使用d
- 音频特效生成与算法 3
_Rye_
音频技术音视频语音识别人工智能
15|AI变声:音频AI技术的集大成者AI技术在音频领域发展十分迅速。除了之前介绍的降噪、回声消除以及丢包补偿等方向可以用AI模型来提升音质听感之外,AI模型还有很多有趣的应用。其中比较常见的有ASR(AutomaticSpeechRecognition)可以理解为语音转文字,TTS(TextToSpeech)文字转语音和VPR(VoicePrintRecognition)声纹识别等。在之前说的音
- Speaker Verification,声纹验证详解——语音信号处理学习(九)
LotusCL
声音信号处理学习信号处理学习语音识别人工智能
参考文献:SpeakerVerification哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记声纹识别-16-知乎(zhihu.com)(2)MetaLearning–Metric-based(1/3)-YouTube如何理解等错误率(EER,EqualErrorRate)?请不要只给定义-知乎(zhihu.com)本次省略所有引用论文目录一、Introduction模型的简
- 最强大脑第二场战平听音神童!百度大脑小度声纹识别技术解析
付江
百度人工智能
日前,继在江苏卫视《最强大脑》第四季“人机大战”首轮任务跨年龄人脸识别竞赛中击败人类顶级选手后,在上周五晚上,百度的小度机器人再次在声纹识别任务上迎战名人堂选手——11岁的“听音神童”孙亦廷,双方最终以1:1打成平手。被称为“鬼才之眼”的水哥(王昱珩)宣布再度出山,将在下周的第三轮比赛中与“小度”在图像识别方面一决高下。本轮题目规则为:从“千里眼”到“顺风耳”,节目组将第二场比赛范围划定在“听”的
- 2023CPEM电力人工智能大会,联丰迅声斩获“声纹识别技术创新奖”
科技赋能生活
人工智能
没有什么能够阻挡人类对美好未来的向往。11月的贵阳,秋色宜人,天高水远。电力大咖齐聚美丽的林城,聚焦电力人工智能高质量发展之路,碰撞创新智慧,畅想绿色未来。2023年11月3日,第4届电力人工智能大会暨第2届电力行业数字化转型大会在贵州贵阳圆满落下帷幕。本届大会由CPEM全国电力设备管理网、国家能源智能电网(上海)研发中心、复杂能源系统智能计算教育部工程研究中心、中国电子劳动学会双碳和能源创新工作
- 说话人识别声纹识别CAM++,ECAPA-TDNN等算法
loong_XL
深度学习语音识别
参考:https://www.modelscope.cn/models?page=1&tasks=speaker-verification&type=audiohttps://github.com/alibaba-damo-academy/3D-Speaker/blob/main/requirements.txt单个声纹比较可以直接modelscope包运行frommodelscope.pipel
- 基于深度学习的语音识别系统构建
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发语音识别人工智能信号处理
加我微信hezkz17进数字音频系统研究开发交流答疑(课题组)项目内容:1.语音识别系统构建:负责基于kaldi的混合语音识别模型系统的构建,包括训练数据的搜集与处理,模型训练测试、rescore解码流程和上线部署等;2.声纹识别系统构建:使用cnn+aam-softmax的模型结构提取说话人声纹特征(embedding),然后在声纹库内进行声纹相似度的检索匹配;3.语种识别算法:使用类似声纹识别
- 多分类loss学习记录
weixin_43870390
分类学习数据挖掘
这里简单的记录在人脸识别/声纹识别中常用的分类loss。详细原理可以参考其他博客。扩展资料1扩展资料2L-softmaxA-softmaxAM-softmaxL-softmax:基于softmax加入了margin,Wx改写为||w||||x||cos(角度),将角度变为了m角度A-softmax:a=Angular,归一化||w||为1,b=0,W*x变成了cos(theta),只优化角度AM-
- 进阶课1——声纹识别
AI 智能服务
AI训练师人工智能语音识别深度学习人机交互搜索引擎
声纹识别是一种生物识别技术,也称为说话人识别,包括说话人辨认和说话人确认两种技术。该技术通过将声信号转换成电信号,再使用计算机进行识别,不同的任务和应用会使用不同的声纹识别技术,例如在缩小刑侦范围时可能需要辨认技术,而在银行交易时则需要确认技术。1.概述2.声纹识别原理声纹识别的技术原理可以分为两个主要步骤:特征提取和模式匹配(模式识别)。在特征提取阶段,声纹识别系统会提取并选择对说话人的声纹具有
- 声纹识别与声源定位(一)
shadowismine
语音识别
针对目前智能计算机及大规模数据的发展,依据大脑处理语音、图像数据方法的deeplearning技术应运而生。deeplearning技术是应用于音频信号识别,模仿大脑的语音信号学习、识别的模式。在音频信号处理的过程中,运用deeplearning进行音频数据的特征提取和训练,将大幅度提高音频信号识别的准确性。首先看下Speakerrecognition声纹识别,声纹是由人类的“发音机理”所产生的,
- 声纹识别与声源定位(二)
shadowismine
语音识别
一、引言什么是声源定位(SoundSourceLocalization,SSL)技术?声源定位技术是指利用多个麦克风在环境不同位置点对声信号进行测量,由于声信号到达各麦克风的时间有不同程度的延迟,利用算法对测量到的声信号进行处理,由此获得声源点相对于麦克风的到达方向(包括方位角、俯仰角)和距离等。当谈及到声源定位,我们很容易联想到人耳定位,人的单耳和双耳都具有定位的能力。在单耳定位中,耳廓各部位会
- 一种基于语音识别的防溺水系统的技术背景
李姝瑶
语音识别人工智能
基于语音识别的防溺水系统是利用语音识别技术来实现对水中人员溺水情况的检测和预警。语音识别技术是计算机科学中的一个分支,主要用于将人类语音转化为文本或命令,并进行计算机处理。在基于语音识别的防溺水系统中,通常会使用语音识别软件来实现对语音的识别和转化,并通过计算机算法分析语音特征,来判断水中人员是否有溺水的风险。为了提高系统的准确性,通常还会使用其他技术来帮助识别和分析水中人员的声音,比如声纹识别技
- 样本量极少如何机器学习?看看这篇Few-Shot Learning综述
人工智能与算法学习
python神经网络机器学习人工智能深度学习
1.样本量极少可以训练机器学习模型吗?在训练样本极少的情况下(几百个、几十个甚至几个样本),现有的机器学习和深度学习模型普遍无法取得良好的样本外表现,用小样本训练的模型很容易陷入对小样本的过拟合以及对目标任务的欠拟合。但基于小样本的模型训练又在工业界有着广泛的需求(单用户人脸和声纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-ShotLearning(小样本学习
- 机器学习 同样数量样本和目标_样本量极少如何机器学习?Few-Shot Learning概述
士节
机器学习同样数量样本和目标
1.样本量极少可以训练机器学习模型吗?在训练样本极少的情况下(几百个、几十个甚至几个样本),现有的机器学习和深度学习模型普遍无法取得良好的样本外表现,用小样本训练的模型很容易陷入对小样本的过拟合以及对目标任务的欠拟合。但基于小样本的模型训练又在工业界有着广泛的需求(单用户人脸和声纹识别、药物研发、推荐冷启动、欺诈识别等样本规模小或数据收集成本高的场景),Few-ShotLearning(小样本学习
- ICASSP 2023说话人识别方向论文合集
语音之家
智能语音人工智能
今年入选ICASSP2023的论文中,说话人识别(声纹识别)方向约有64篇,初步划分为SpeakerVerification(31篇)、SpeakerRecognition(9篇)、SpeakerDiarization(17篇)、Anti-Spoofing(4篇)、others(3篇)五种类型。本文是ICASSP2023说话人识别方向论文合集系列的最后一期,整理了SpeakerRecognitio
- 指纹、刷脸多灾多难,声纹识别能否崛起成为新主流?
Daffodil_51e5
姓名:李沂配19021210904转载自:http://baijiahao.baidu.com/s?id=1651976625619916831&wfr=spider&for=pc【嵌牛导读】:人们较为熟悉的识别技术就包括有指纹识别和人脸识别,它们广泛应用于手机解锁、移动支付、交通乘坐、安防门禁等场景之中,给人们带来了不少便利。不过,由于安全性方面的问题,当前两者的日子却并不好过。基于声纹识别独特
- 基于PaddlePaddle实现的声纹识别系统
夜雨飘零1
语音PaddlePaddle深度学习paddlepaddle人工智能声纹识别深度学习
前言本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFaceLoss,ArcFaceloss:AdditiveAngularMarginLoss(加性角度间隔损失函数),对应项目中的AAMLo
- 基于Pytorch实现的声纹识别系统
夜雨飘零1
语音Pytorch深度学习pytorch人工智能python声纹识别深度学习
前言本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFaceLoss,ArcFaceloss:AdditiveAngularMarginLoss(加性角度间隔损失函数),对应项目中的AAMLo
- NeMo 声纹识别VPR-实战
wxl781227
ASR实战人工智能声纹识别声纹验证
声纹识别(VPR),生物识别技术的一种,也称为说话人识别,是从说话人发出的语音信号中提取声纹信息,从应用上看,可分为:说话人辨认(SpeakerIdentification):用以判断某段语音是若干人中的哪一个所说的,是“多选一”问题;说话人确认(SpeakerVerification):用以确认某段语音是否是指定的某个人所说的,是“一对一判别”问题。本文主要是识别两个声音是否为同一个人。应用场景
- 怎样用声纹识别,提升智能硬件产品的用户体验?-转
生活的探路者
一、背景当前智能硬件产品中,最耀眼的莫过于百箱大战的智能音箱、百“机”争鸣的智能机器人,这些智能语音产品已逐渐走进百姓的视线中。在智能音箱市场中,且不说国外的AmasonEcho和GoogleHome,仅在国内,去年双十一,天猫精灵99元跳楼价卖了一百万台,还有铺天盖地而来的小爱同学、叮咚音箱、小雅同学、出门问问等。今年,百度推出比天猫精灵还低10元的小度智能音箱,仅卖89元,烧钱大战一个比一个狠
- 使用tensorflow和densenet神经网路实现语谱图声纹识别,即说话人识别。
zhigongjz
神经网络CNN卷积TensorflowDensenet语谱图声纹识别
介绍本文介绍一种使用tensorflow框架和densenet神经网路实现声纹语谱图识别算法,即说话人识别。本文侧重一种解决方案的思路,仅做了小批量数据的简单验证,收敛效果良好,还没有做大量数据集的验证,后期会做一些实际的验证,请持续关注。如果乐意与我交流,文章后面有联系方式,随时欢迎。代码地址码云:https://gitee.com/lizhigong/VoiceprintRecognition
- 使用mondorescue将本机linux centos 7服务器制作成光盘
wuxianfeng1987
Linux
准备重新训练声纹识别,数据集增加了10来G,原来的4台设备完全不够用啊,然后就准备把公司淘汰的i3i5笔记本拿来加入集群,如何快速搭建环境呢,直接将配置好的备份成ios,然后安装,接下来记录下整个流程,感觉以后会用到。步骤:1、wgetftp://ftp.mondorescue.org/centos/7/x86_64/mondorescue.repo[注意要选择ftp下的centos,不然依赖包下
- 教你windows下配置java环境变量&idea配置maven库(标贝科技)
DataBaker标贝科技
常用工具java语音识别人工智能
配置java环境变量+idea配置maven库(标贝科技)前言配置环境变量是小伙伴们入坑的第一步,本文将一步一步详细介绍,保证大家都能够看懂!!!顺便介绍下:我们是一家致力于智能语音交互的AI公司,我们提供了语音识别、语音合成、声纹识别、声音复刻、声音转换等技术产品供小伙伴们测试调用,感兴趣的,第三部分有详细说明!!!!!一、配置java环境变量下载jdk地址:https://www.oracle
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1