题意简述
原题LightOJ 1240,Point Segment Distance(3D)。
求三维空间里线段AB与C。
题解
我们设一个点在线段AB上移动,然后发现这个点与原来的C点的距离呈一个单峰状,于是珂以三分。
三分的时候处理一下,把A点坐标移动到(0,0,0)珂以方便操作。
代码
#include
#include
namespace fast_IO{
const int IN_LEN = 10000000, OUT_LEN = 10000000;
char ibuf[IN_LEN], obuf[OUT_LEN], *ih = ibuf + IN_LEN, *oh = obuf, *lastin = ibuf + IN_LEN, *lastout = obuf + OUT_LEN - 1;
inline char getchar_(){return (ih == lastin) && (lastin = (ih = ibuf) + fread(ibuf, 1, IN_LEN, stdin), ih == lastin) ? EOF : *ih++;}
inline void putchar_(const char x){if(oh == lastout) fwrite(obuf, 1, oh - obuf, stdout), oh = obuf; *oh ++= x;}
inline void flush(){fwrite(obuf, 1, oh - obuf, stdout);}
int read(){
int x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar_();
if (ch == '-') zf = -1, ch = getchar_();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar_(); return x * zf;
}
void write(int x){
if (x < 0) putchar_('-'), x = -x;
if (x > 9) write(x / 10);
putchar_(x % 10 + '0');
}
}
using namespace fast_IO;
struct Pos{
double x, y, z;
} pos[3];
long double cacDis(Pos &a, Pos &b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) + (a.z - b.z) * (a.z - b.z));
}
long double cac(long double num){
Pos _new = (Pos){pos[1].x * num, pos[1].y * num, pos[1].z * num};
Pos mid = (Pos){(_new.x + pos[0].x) / 2, (_new.y + pos[0].y) / 2, (_new.z + pos[0].z) / 2};
return cacDis(mid, pos[2]);
}
int main(){
int t = read();
for (int j = 1; j <= t; ++j){
pos[0].x = read(), pos[0].y = read(), pos[0].z = read();
pos[1].x = read(), pos[1].y = read(), pos[1].z = read( );
pos[1].x -= pos[0].x, pos[1].y -= pos[0].y, pos[1].z -= pos[0].z;
pos[2].x = read(), pos[2].y = read(), pos[2].z = read();
pos[2].x -= pos[0].x, pos[2].y -= pos[0].y, pos[2].z -= pos[0].z;
pos[0].x -= pos[0].x, pos[0].y -= pos[0].y, pos[0].z -= pos[0].z;
long double l = 0, r = 2.0, mid;
long double mmid; long double ans = 0.0;
for (int i = 1; i <= 100; ++i){
mid = (l + r) / 2;
mmid = (mid + r) / 2;
if (cac(mid) <= cac(mmid))
r = mmid, ans = mmid;
else
l = mid;
}
printf("Case %d: %.9Lf\n", j, cac(ans));
}
return 0;
}