使用opencv进行疲劳监测

中国有大概600万长途货车司机,在我老家也有很多人从事这一工作,这个工作辛苦且高危,就在今年春节前几天,邻村有个30多岁的货车司机因为疲劳驾驶,直接追尾等红灯的大货车,不幸离世,这让我不禁想起,如果疲劳检测系统能够普及,也许可以挽回很多生命。本篇文章讲一下如何用opencv检测眼睛的闭合状态来进行疲劳监测报警。

宋丹丹:问把大象关冰箱分几步?

赵本山:几步?

宋丹丹:三步!一、把门打开 二、把大象塞进去 三、把门关上

这里的代码也是分三步,很直接、很清晰。

1、打开摄像头,获取每一帧图片,检测人脸位置

2、在检测到人脸的基础上,提取人脸特征点(68个),取出眼睛对应坐标。

3、计算眼睛的高宽比,也就是闭合程度,根据闭合程度和持续时间决定是否报警。

在实际项目中,我们使用c++实现,这里为实验方便,使用python代码做演示。顺便提一点,在实际项目中,我们还结合了嘴巴张开的程度,即打哈欠的动作判断。

先上代码:

# USAGE
# python detect_drowsiness.py --shape-predictor shape_predictor_68_face_landmarks.dat
# python detect_drowsiness.py --shape-predictor shape_predictor_68_face_landmarks.dat --alarm alarm.wav

# import the necessary packages
from scipy.spatial import distance as dist
from imutils.video import VideoStream
from imutils import face_utils
from threading import Thread
import numpy as np
import playsound
import argparse
import imutils
import time
import dlib
import cv2

def sound_alarm(path):
	# play an alarm sound
	playsound.playsound(path)

def eye_aspect_ratio(eye):
	# compute the euclidean distances between the two sets of
	# vertical eye landmarks (x, y)-coordinates
	A = dist.euclidean(eye[1], eye[5])
	B = dist.euclidean(eye[2], eye[4])

	# compute the euclidean distance between the horizontal
	# eye landmark (x, y)-coordinates
	C = dist.euclidean(eye[0], eye[3])

	# compute the eye aspect ratio
	ear = (A + B) / (2.0 * C)

	# return the eye aspect ratio
	return ear
 
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
	help="path to facial landmark predictor")
ap.add_argument("-a", "--alarm", type=str, default="",
	help="path alarm .WAV file")
ap.add_argument("-w", "--webcam", type=int, default=0,
	help="index of webcam on system")
args = vars(ap.parse_args())
 
# define two constants, one for the eye aspect ratio to indicate
# blink and then a second constant for the number of consecutive
# frames the eye must be below the threshold for to set off the
# alarm
EYE_AR_THRESH = 0.3
EYE_AR_CONSEC_FRAMES = 48

# initialize the frame counter as well as a boolean used to
# indicate if the alarm is going off
COUNTER = 0
ALARM_ON = False

# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])

# grab the indexes of the facial landmarks for the left and
# right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

# start the video stream thread
print("[INFO] starting video stream thread...")
vs = VideoStream(src=args["webcam"]).start()
time.sleep(1.0)

# loop over frames from the video stream
while True:
	# grab the frame from the threaded video file stream, resize
	# it, and convert it to grayscale
	# channels)
	frame = vs.read()
	frame = imutils.resize(frame, width=500)
	gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

	# detect faces in the grayscale frame
	rects = detector(gray, 0)

	# loop over the face detections
	for rect in rects:
		# determine the facial landmarks for the face region, then
		# convert the facial landmark (x, y)-coordinates to a NumPy
		# array
		shape = predictor(gray, rect)
		shape = face_utils.shape_to_np(shape)

		# extract the left and right eye coordinates, then use the
		# coordinates to compute the eye aspect ratio for both eyes
		leftEye = shape[lStart:lEnd]
		rightEye = shape[rStart:rEnd]
		leftEAR = eye_aspect_ratio(leftEye)
		rightEAR = eye_aspect_ratio(rightEye)

		# average the eye aspect ratio together for both eyes
		ear = (leftEAR + rightEAR) / 2.0

		# compute the convex hull for the left and right eye, then
		# visualize each of the eyes
		leftEyeHull = cv2.convexHull(leftEye)
		rightEyeHull = cv2.convexHull(rightEye)
		cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
		cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)

		# check to see if the eye aspect ratio is below the blink
		# threshold, and if so, increment the blink frame counter
		if ear < EYE_AR_THRESH:
			COUNTER += 1

			# if the eyes were closed for a sufficient number of
			# then sound the alarm
			if COUNTER >= EYE_AR_CONSEC_FRAMES:
				# if the alarm is not on, turn it on
				if not ALARM_ON:
					ALARM_ON = True

					# check to see if an alarm file was supplied,
					# and if so, start a thread to have the alarm
					# sound played in the background
					if args["alarm"] != "":
						t = Thread(target=sound_alarm,
							args=(args["alarm"],))
						t.deamon = True
						t.start()

				# draw an alarm on the frame
				cv2.putText(frame, "DROWSINESS ALERT!", (10, 30),
					cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

		# otherwise, the eye aspect ratio is not below the blink
		# threshold, so reset the counter and alarm
		else:
			COUNTER = 0
			ALARM_ON = False

		# draw the computed eye aspect ratio on the frame to help
		# with debugging and setting the correct eye aspect ratio
		# thresholds and frame counters
		cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
			cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
 
	# show the frame
	cv2.imshow("Frame", frame)
	key = cv2.waitKey(1) & 0xFF
 
	# if the `q` key was pressed, break from the loop
	if key == ord("q"):
		break

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

注:如果运行时提示有些module找不到,请使用pip install安装即可

看效果:

使用opencv进行疲劳监测_第1张图片

 

使用opencv进行疲劳监测_第2张图片

代码解析:

首先,看68个人脸特征点的分布

使用opencv进行疲劳监测_第3张图片

根据上图的标识,我们要获取到左右眼的特征点坐标 :

(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]

其中。(lStart,lEnd) =37,42+1。(rStart,rEnd)= 43,48+1。通过列表切片操作即可取出左右眼的相关坐标。

接下来,根据下图分析,人眼的眨眼动作有如下特点:眼睛的睁开的横宽比随时间的变化如图表所示,睁开时会保持固定且在0.25左右,然后迅速下降到0.1以下,再然后迅速上升到0.25左右,完成一次眨眼动作。

使用opencv进行疲劳监测_第4张图片

 根据之前获取的眼睛坐标,计算眼睛睁开的横宽比,方法如下,求直角坐标系中的两点距离就不用讲了。

def eye_aspect_ratio(eye):
	# compute the euclidean distances between the two sets of
	# vertical eye landmarks (x, y)-coordinates
	A = dist.euclidean(eye[1], eye[5])
	B = dist.euclidean(eye[2], eye[4])

	# compute the euclidean distance between the horizontal
	# eye landmark (x, y)-coordinates
	C = dist.euclidean(eye[0], eye[3])

	# compute the eye aspect ratio
	ear = (A + B) / (2.0 * C)

	# return the eye aspect ratio
	return ear

讲2个眼睛的横宽比进行平均。

# loop over the face detections
	for rect in rects:
		# determine the facial landmarks for the face region, then
		# convert the facial landmark (x, y)-coordinates to a NumPy
		# array
		shape = predictor(gray, rect)
		shape = face_utils.shape_to_np(shape)
		# extract the left and right eye coordinates, then use the
		# coordinates to compute the eye aspect ratio for both eyes
		leftEye = shape[lStart:lEnd]
		rightEye = shape[rStart:rEnd]
		leftEAR = eye_aspect_ratio(leftEye)
		rightEAR = eye_aspect_ratio(rightEye)
		# average the eye aspect ratio together for both eyes
		ear = (leftEAR + rightEAR) / 2.0

接下来,根据我们设定的阈值进行逻辑判断:如果ear连续小于阈值的帧数大于48则报警,只要出现一次ear小于阈值,则计数清零,起到滤波作用。逻辑比较清晰简单。

# check to see if the eye aspect ratio is below the blink
		# threshold, and if so, increment the blink frame counter
		if ear < EYE_AR_THRESH:
			COUNTER += 1

			# if the eyes were closed for a sufficient number of
			# then sound the alarm
			if COUNTER >= EYE_AR_CONSEC_FRAMES:
				# if the alarm is not on, turn it on
				if not ALARM_ON:
					ALARM_ON = True

					# check to see if an alarm file was supplied,
					# and if so, start a thread to have the alarm
					# sound played in the background
					if args["alarm"] != "":
						t = Thread(target=sound_alarm,
							args=(args["alarm"],))
						t.deamon = True
						t.start()

				# draw an alarm on the frame
				cv2.putText(frame, "DROWSINESS ALERT!", (10, 30),
					cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

		# otherwise, the eye aspect ratio is not below the blink
		# threshold, so reset the counter and alarm
		else:
			COUNTER = 0
			ALARM_ON = False

		# draw the computed eye aspect ratio on the frame to help
		# with debugging and setting the correct eye aspect ratio
		# thresholds and frame counters
		cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
			cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)

 

 

 

参考链接:https://www.pyimagesearch.com/2017/05/08/drowsiness-detection-opencv/

你可能感兴趣的:(人脸特征点,疲劳检测)