Kafka 中使用 Avro 序列化框架(一):使用传统的 avro API 自定义序列化类和反序列化类

关于 avro 的 maven 工程的搭建以及 avro 的入门知识,可以参考: Apache Avro 入门

1. 定义 schema 文件,并编译 maven 工程生成实体类

schema 文件名称为:stock.avsc,内容如下:

{
    "namespace": "com.bonc.rdpe.kafka110.beans",
    "type": "record",
    "name": "Stock",
    "fields": [
        {"name": "stockCode", "type": "string"},
        {"name": "stockName",  "type": "string"},
        {"name": "tradeTime", "type": "long"},
        {"name": "preClosePrice", "type": "float"},
        {"name": "openPrice", "type": "float"},
        {"name": "currentPrice", "type": "float"},
        {"name": "highPrice", "type": "float"},
        {"name": "lowPrice", "type": "float"}
    ]
}

编译 maven 工程生成实体类:

Kafka 中使用 Avro 序列化框架(一):使用传统的 avro API 自定义序列化类和反序列化类_第1张图片

2. 自定义序列化类和反序列化类

(1) 序列化类

package com.bonc.rdpe.kafka110.serializer;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.Map;

import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.kafka.common.serialization.Serializer;

import com.bonc.rdpe.kafka110.beans.Stock;

/**
 * @Title AvroSerializer.java 
 * @Description 使用传统的 Avro API 自定义序列化类
 * @Author YangYunhe
 * @Date 2018-06-21 16:40:35
 */
public class AvroSerializer implements Serializer {

    @Override
    public void close() {}

    @Override
    public void configure(Map arg0, boolean arg1) {}

    @Override
    public byte[] serialize(String topic, Stock data) {
        if(data == null) {
            return null;
        }
        DatumWriter writer = new SpecificDatumWriter<>(data.getSchema());
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(out, null);
        try {
            writer.write(data, encoder);
        }catch (IOException e) {
            throw new SerializationException(e.getMessage());
        }
        return out.toByteArray();
    }

}

(2) 反序列化类

package com.bonc.rdpe.kafka110.deserializer;

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.util.Map;

import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.DatumReader;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.kafka.common.serialization.Deserializer;

import com.bonc.rdpe.kafka110.beans.Stock;

/**
 * @Title AvroDeserializer.java 
 * @Description 使用传统的 Avro API 自定义反序列类
 * @Author YangYunhe
 * @Date 2018-06-21 17:19:40
 */
public class AvroDeserializer implements Deserializer {

    @Override
    public void close() {}

    @Override
    public void configure(Map arg0, boolean arg1) {}

    @Override
    public Stock deserialize(String topic, byte[] data) {
        if(data == null) {
            return null;
        }
        Stock stock = new Stock();
        ByteArrayInputStream in = new ByteArrayInputStream(data);
        DatumReader userDatumReader = new SpecificDatumReader<>(stock.getSchema());
        BinaryDecoder decoder = DecoderFactory.get().directBinaryDecoder(in, null);
        try {
            stock = userDatumReader.read(null, decoder);
        } catch (IOException e) {
            e.printStackTrace();
        }
        return stock;
    }
}

3. KafkaProducer使用自定义的序列化类发送消息

package com.bonc.rdpe.kafka110.producer;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import com.bonc.rdpe.kafka110.beans.Stock;

/**
 * @Title TraditionalAvroProducer.java 
 * @Description Kafka Producer 发送avro序列化后的Stock对象
 * @Author YangYunhe
 * @Date 2018-06-21 17:41:59
 */
public class TraditionalAvroProducer {
    
    public static void main(String[] args) throws Exception {
        
        Stock[] stocks = new Stock[100];
        for(int i = 0; i < 100; i++) {
            stocks[i] = new Stock();
            stocks[i].setStockCode(String.valueOf(i));
            stocks[i].setStockName("stock" + i);
            stocks[i].setTradeTime(System.currentTimeMillis());
            stocks[i].setPreClosePrice(100.0F);
            stocks[i].setOpenPrice(88.8F);
            stocks[i].setCurrentPrice(120.5F);
            stocks[i].setHighPrice(300.0F);
            stocks[i].setLowPrice(12.4F);
        }
        
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.42.89:9092,192.168.42.89:9093,192.168.42.89:9094");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // 设置序列化类为自定义的 avro 序列化类
        props.put("value.serializer", "com.bonc.rdpe.kafka110.serializer.AvroSerializer");

        Producer producer = new KafkaProducer<>(props);
        
        for(Stock stock : stocks) {
            ProducerRecord record = new ProducerRecord<>("dev3-yangyunhe-topic001", stock);
            RecordMetadata metadata = producer.send(record).get();
            StringBuilder sb = new StringBuilder();
            sb.append("stock: ").append(stock.toString()).append(" has been sent successfully!").append("\n")
                .append("send to partition ").append(metadata.partition())
                .append(", offset = ").append(metadata.offset());
            System.out.println(sb.toString());
            Thread.sleep(100);
        }
        
        producer.close();
    }
}

4. KafkaConsumer使用自定义的反序列化类接收消息

package com.bonc.rdpe.kafka110.consumer;

import java.util.Collections;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import com.bonc.rdpe.kafka110.beans.Stock;

/**
 * @Title TraditionalAvroConsumer.java 
 * @Description Kafka Consumer 解析avro序列化后的Stock对象
 * @Author YangYunhe
 * @Date 2018-06-21 17:43:03
 */
public class TraditionalAvroConsumer {
    
    public static void main(String[] args) {
        
        Properties props = new Properties();
        props.put("bootstrap.servers", "192.168.42.89:9092,192.168.42.89:9093,192.168.42.89:9094");
        props.put("group.id", "dev3-yangyunhe-group001");
        props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        // 设置反序列化类为自定义的avro反序列化类
        props.put("value.deserializer","com.bonc.rdpe.kafka110.deserializer.AvroDeserializer");
        KafkaConsumer consumer = new KafkaConsumer<>(props);
        
        consumer.subscribe(Collections.singletonList("dev3-yangyunhe-topic001"));
        
        try {
            while(true) {
                ConsumerRecords records = consumer.poll(100);
                for(ConsumerRecord record : records) {
                    Stock stock = record.value();
                    System.out.println(stock.toString());
                }
            }
        }finally {
            consumer.close();
        }
    }
}

5. 测试结果

运行生产者代码后控制台输出:

stock: {"stockCode": "0", "stockName": "stock0", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4} has been sent successfully!
send to partition 0, offset = 552
stock: {"stockCode": "1", "stockName": "stock1", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4} has been sent successfully!
send to partition 2, offset = 551
stock: {"stockCode": "2", "stockName": "stock2", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4} has been sent successfully!
send to partition 1, offset = 551
stock: {"stockCode": "3", "stockName": "stock3", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4} has been sent successfully!
send to partition 0, offset = 553
stock: {"stockCode": "4", "stockName": "stock4", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4} has been sent successfully!
send to partition 2, offset = 552

......

运行消费者代码后控制台输出:

{"stockCode": "0", "stockName": "stock0", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4}
{"stockCode": "1", "stockName": "stock1", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4}
{"stockCode": "2", "stockName": "stock2", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4}
{"stockCode": "3", "stockName": "stock3", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4}
{"stockCode": "4", "stockName": "stock4", "tradeTime": 1529631848353, "preClosePrice": 100.0, "openPrice": 88.8, "currentPrice": 120.5, "highPrice": 300.0, "lowPrice": 12.4}

......

你可能感兴趣的:(Kafka 中使用 Avro 序列化框架(一):使用传统的 avro API 自定义序列化类和反序列化类)