拼接数组/删除元素

矩阵拼接的函数tf.stack()与矩阵分解的函数tf.unstack()

tf.unstack(value, num=None, axis=0, name='unstack')
    Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors.

    Unpacks `num` tensors from `value` by chipping it along the `axis` dimension.

    Args:
      value: A rank `R > 0` `Tensor` to be unstacked.
      num: An `int`. The length of the dimension `axis`. Automatically inferred
      //一个“int”。尺寸“轴”的长度。自动推断为“无”(默认)。

        if `None` (the default).
      axis: An `int`. The axis to unstack along. Defaults to the first
        dimension. Supports negative indexes.
      name: A name for the operation (optional).

    Returns:
      The list of `Tensor` objects unstacked from `value`.

    Raises:
      ValueError: If `num` is unspecified and cannot be inferred.
      ValueError: If `axis` is out of the range [-R, R).
import tensorflow as tf
a = tf.constant([1,2,3])
b = tf.constant([4,5,6])
c = tf.stack([a,b],axis=1)
d = tf.unstack(c,axis=0)
e = tf.unstack(c,axis=1)
print(c.get_shape())
with tf.Session() as sess:
    print(sess.run(c))
    print(sess.run(d))
    print(sess.run(e))

(3, 2)

[[1 4] 
[2 5] 
[3 6]]

[array([1, 4]), array([2, 5]), array([3, 6])]

[array([1, 2, 3]), array([4, 5, 6])]

numpy.delete删除行或列

import numpy as np
A = np.delete(B, 2, axis=0)  # 删除B的第三行
B = np.delete(C, 1, axis=1)  # 删除C的第2列
  • 删除一列
>>> dataset=[[1,2,3],[2,3,4],[4,5,6]]  
>>> import numpy as np  
>>> dataset = np.delete(dataset, -1, axis=1)  
>>> dataset  
array([[1, 2],  
       [2, 3],  
       [4, 5]])  
  • 删除多列
arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])  
np.delete(arr, [1,2], axis=1)  
array([[ 1,  4],  
       [ 5,  8],  
       [ 9, 12]])  

拼接_numpy列表索引方式

a=np.array([[1,2],[3,4],[5,6],[7,8]])
b=a[:2]
  • numpy.concatenate
    numpy.concatenate((a1, a2, …), axis=0)
    Join a sequence of arrays along an existing axis.
    Parameters:
    a1, a2, … : sequence of array_like
    The arrays must have the same shape, except in the dimension corresponding to axis (the first, by default).
    axis : int, optional
    The axis along which the arrays will be joined. Default is 0.
    Returns:
    res : ndarray
    The concatenated array.
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
       [3, 4, 6]])
###############################
>>> a = np.ma.arange(3)
>>> a[1] = np.ma.masked
>>> b = np.arange(2, 5)
>>> a
masked_array(data = [0 -- 2],
             mask = [False  True False],
       fill_value = 999999)
>>> b
array([2, 3, 4])
>>> np.concatenate([a, b])
masked_array(data = [0 1 2 2 3 4],
             mask = False,
       fill_value = 999999)
>>> np.ma.concatenate([a, b])
masked_array(data = [0 -- 2 2 3 4],
             mask = [False  True False False False False],
       fill_value = 999999)

拼接_tf.concat

拼接数组/删除元素_第1张图片

    python
    t1 = [[1, 2, 3], [4, 5, 6]]
    t2 = [[7, 8, 9], [10, 11, 12]]
    tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
    tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]

    # tensor t3 with shape [2, 3]
    # tensor t4 with shape [2, 3]
    tf.shape(tf.concat([t3, t4], 0)) ==> [4, 3]
    tf.shape(tf.concat([t3, t4], 1)) ==> [2, 6]

拼接_keras.legacy.layers.merge

Help on function merge in module keras.legacy.layers:

merge(inputs, mode='sum', concat_axis=-1, dot_axes=-1, output_shape=None, output_mask=None, arguments=None, name=None)
    Functional merge, to apply to Keras tensors (NOT layers).
    Returns a Keras tensor.
    # Example

    # Arguments
        mode: String or lambda/function. If string, must be one
            of: 'sum', 'mul', 'concat', 'ave', 'cos', 'dot', 'max'.
            If lambda/function, it should take as input a list of tensors
            and return a single tensor.
        concat_axis: Integer, axis to use in mode `concat`.
        dot_axes: Integer or tuple of integers,
            axes to use in mode `dot` or `cos`.
        output_shape: Shape tuple (tuple of integers), or lambda/function
            to compute output_shape (only if merge mode is a lambda/function).
            If the latter case, it should take as input a list of shape tuples
            (1:1 mapping to input tensors) and return a single shape tuple,
            including the batch size
            (same convention as the `compute_output_shape` method of layers).
        node_indices: Optional list of integers containing
            the output node index for each input layer
            (in case some input layers have multiple output nodes).
            will default to an array of 0s if not provided.
        tensor_indices: Optional list of indices of output tensors
            to consider for merging
            (in case some input layer node returns multiple tensors).
concat_feat = merge([concat_feat, x], mode='concat', concat_axis=concat_axis, name='concat_'+str(stage)+'_'+str(branch))

拼接_keras.legacy.layers.merge.concatenate()

>>> import keras.legacy.layers as layers
>>> dir(layers)
['AtrousConvolution1D', 'AtrousConvolution2D', 'Highway', 'InputSpec', 'K', 'Layer', 'MaxoutDense', 'Merge', '__builtins__', '__doc__', '__file__', '__name__', '__package__', 'activations', 'constraints', 'func_dump', 'func_load', 'initializers', 'inspect', 'merge', 'python_types', 'regularizers', 'warnings']
>>>
>>> dir(layers.Merge)
['__call__', '__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_add_inbound_node', '_arguments_validation', '_get_node_attribute_at_index', 'add_loss', 'add_update', 'add_weight', 'assert_input_compatibility', 'build', 'built', 'call', 'compute_mask', 'compute_output_shape', 'constraints', 'count_params', 'from_config', 'get_config', 'get_input_at', 'get_input_mask_at', 'get_input_shape_at', 'get_losses_for', 'get_output_at', 'get_output_mask_at', 'get_output_shape_at', 'get_updates_for', 'get_weights', 'input', 'input_mask', 'input_shape', 'losses', 'non_trainable_weights', 'output', 'output_mask', 'output_shape', 'set_weights', 'trainable_weights', 'updates', 'weights']
def concatenate(inputs, axis=-1, **kwargs):
    """Functional interface to the `Concatenate` layer.

    # Arguments
        inputs: A list of input tensors (at least 2).
        axis: Concatenation axis.
        **kwargs: Standard layer keyword arguments.

    # Returns
        A tensor, the concatenation of the inputs alongside axis `axis`.
    """
    return Concatenate(axis=axis, **kwargs)(inputs)
x = layers.concatenate(
        [branch1x1, branch5x5, branch3x3dbl, branch_pool],
        axis=channel_axis,
        name='mixed1')

mxnet.ndarray.concat(*data, **kwargs)

拼接数组/删除元素_第2张图片

x = [[1,1],[2,2]]
y = [[3,3],[4,4],[5,5]]
z = [[6,6], [7,7],[8,8]]

concat(x,y,z,dim=0) = [[ 1.,  1.],
                       [ 2.,  2.],
                       [ 3.,  3.],
                       [ 4.,  4.],
                       [ 5.,  5.],
                       [ 6.,  6.],
                       [ 7.,  7.],
                       [ 8.,  8.]]

Note that you cannot concat x,y,z along dimension 1 since dimension
0 is not the same for all the input arrays.

concat(y,z,dim=1) = [[ 3.,  3.,  6.,  6.],
                      [ 4.,  4.,  7.,  7.],
                      [ 5.,  5.,  8.,  8.]]
print('real...')
test_iter.reset()
batch = test_iter.next()
y_te = batch.label[0]
# print(batch.label[0], batch.data[0].shape)

for batch in test_iter:
    y_te = mx.ndarray.concat(y_te, batch.label[0], dim=0)
print(len(batch.label[0]), len(y_te))

mxnet.symbol.Concat(*data, **kwargs)

Parameters: 
data (Symbol[]) – List of arrays to concatenate
dim (int, optional, default='1') – the dimension to be concated.
name (string, optional.) – Name of the resulting symbol.
Returns:    
The result symbol.

Return type:    
Symbol

Examples

Concat two (or more) inputs along a specific dimension:

>>> a = Variable('a')
>>> b = Variable('b')
>>> c = Concat(a, b, dim=1, name='my-concat')
>>> c

>>> SymbolDoc.get_output_shape(c, a=(128, 10, 3, 3), b=(128, 15, 3, 3))
{'my-concat_output': (128L, 25L, 3L, 3L)}
mxnet.symbol.slice_axis(data=None, axis=_Null, begin=_Null, end=_Null, name=None, attr=None, out=None, **kwargs)
Parameters: 
data (Symbol) – Source input
axis (int, required) – Axis along which to be sliced, supports negative indexes.
begin (int, required) – The beginning index along the axis to be sliced, supports negative indexes.
end (int or None, required) – The ending index along the axis to be sliced, supports negative indexes.
name (string, optional.) – Name of the resulting symbol.
Returns:    
The result symbol.

Return type:

Examples:

x = [[  1.,   2.,   3.,   4.],
     [  5.,   6.,   7.,   8.],
     [  9.,  10.,  11.,  12.]]

slice_axis(x, axis=0, begin=1, end=3) = [[  5.,   6.,   7.,   8.],
                                         [  9.,  10.,  11.,  12.]]

slice_axis(x, axis=1, begin=0, end=2) = [[  1.,   2.],
                                         [  5.,   6.],
                                         [  9.,  10.]]

slice_axis(x, axis=1, begin=-3, end=-1) = [[  2.,   3.],
                                           [  6.,   7.],
                                           [ 10.,  11.]]

你可能感兴趣的:(数据预处理)