题目链接 https://vjudge.net/problem/UVA-534
【题意】
平面直角坐标系上给定n个点,求前两个点的最小瓶颈路的大小,最小瓶颈路是指无向图中有两个结点u,v,求出从u到v的一条路径,使得这条路径上的最长的边尽可能的短,这条最长的边长就是答案。
【思路】
这道题目有两种做法,因为只问前两个点的最小瓶颈路,所以可以直接用kruscal算法做,这里有一个重要的结论就是kruscal算法执行的时候第一次将结点u,v连通起来时,那么这条边就是u,v之间的最小瓶颈路,根据这个结论,在kruscal算法每次加边的时候判断前两个结点是否连通,连通则立刻输出这条边的边长即可。
#include
using namespace std;
const int maxn = 220;
struct Edge {
int from, to;
double dist;
Edge(int f = 0, int t = 0, double d = 0) :from(f), to(t), dist(d) {}
bool operator<(const Edge& e) const {
return dist < e.dist;
}
};
int n;
int par[maxn];
int x[maxn], y[maxn];
vector edges;
double dis(int x1, int y1, int x2, int y2) {
return sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
}
int find(int x) { return par[x] == x ? x : par[x] = find(par[x]); }
void kruscal() {
for (int i = 0; i < n; ++i) par[i] = i;
for (int i = 0; i < edges.size(); ++i) {
int x = find(edges[i].from);
int y = find(edges[i].to);
if (x != y) {
par[x] = y;
}
if (find(0) == find(1)) {
printf("Frog Distance = %.3lf\n\n", edges[i].dist);
return;
}
}
}
int main() {
int kase = 0;
while (scanf("%d", &n) == 1 && n) {
for (int i = 0; i < n; ++i) {
scanf("%d%d", &x[i], &y[i]);
}
edges.clear();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
double d = dis(x[i], y[i], x[j], y[j]);
edges.push_back(Edge(i, j, d));
}
}
sort(edges.begin(), edges.end());
printf("Scenario #%d\n", ++kase);
kruscal();
}
return 0;
}
这道题的数据规模较小,所以我们也可以求出整个图任意两点的最小瓶颈路,方法就是大白书343页所讲,设f(u,v)是u,v之间的最小瓶颈路,那么在求出最小生成树并建立好无向图之后,可以借助于dfs求解,设u是当前dfs访问的结点,dfs下一次访问的结点是v,每次dfs要更新v和所有的已访问结点x的最小瓶颈路f[v][x]和f[x][v],那么f[v][x]=f[x][v]=max(f[x][u],w(u,v)),u相当于v的父亲结点。
#include
using namespace std;
const int maxn = 220;
struct Edge {
int from, to;
double dist;
Edge(int f = 0, int t = 0, double d = 0.0) :from(f), to(t), dist(d) {}
bool operator<(const Edge& e) const {
return dist < e.dist;
}
};
int n;
int par[maxn];
int x[maxn], y[maxn];
double f[maxn][maxn];//f[u][v]=f[v][u]=u,v两点之间的最小瓶颈路
bool used[maxn];
vector edges, g[maxn];//g是邻接表
double dis(int x1, int y1, int x2, int y2) {
return sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
}
int find(int x) { return par[x] == x ? x : par[x] = find(par[x]); }
void kruscal() {
int cnt = 0;
for (int i = 0; i < n; ++i) {
par[i] = i;
g[i].clear();
}
for (int i = 0; i < edges.size(); ++i) {
int x = find(edges[i].from);
int y = find(edges[i].to);
if (x != y) {
par[x] = y;
//建立无向图
g[edges[i].from].push_back(Edge(edges[i].from, edges[i].to, edges[i].dist));
g[edges[i].to].push_back(Edge(edges[i].to, edges[i].from, edges[i].dist));
if (++cnt == n - 1) return;
}
}
}
void dfs(int u) {
used[u] = 1;
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i].to;//v是u的子结点
double d = g[u][i].dist;
if (!used[v]) {
for (int x = 0; x < n; ++x) {
if (used[x])//遍历所有已访问结点
f[x][v] = f[v][x] = max(f[u][x], d);//更新答案
}
dfs(v);
}
}
}
int main() {
int kase = 0;
while (scanf("%d", &n) == 1 && n) {
for (int i = 0; i < n; ++i) scanf("%d%d", &x[i], &y[i]);
edges.clear();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
double d = dis(x[i], y[i], x[j], y[j]);
edges.push_back(Edge(i, j, d));
}
}
sort(edges.begin(), edges.end());
kruscal();
memset(used, 0, sizeof(used));
for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) f[i][j] = 0.0;
dfs(0);
printf("Scenario #%d\nFrog Distance = %.3lf\n\n", ++kase, f[0][1]);
}
return 0;
}