https://www.lucien.ink/archives/186/
http://codeforces.com/gym/101635/attachments
As Jacques-Édouard really likes birthday cakes, he celebrates his birthday every hour, instead of every year. His friends ordered him a round cake from a famous pastry shop, and placed candles on its top surface. The number of candles equals the age of Jacques-Édouard in hours. As a result, there is a huge amount of candles burning on the top of the cake. Jacques-Édouard wants to blow all the candles out in one single breath.
You can think of the flames of the candles as being points in the same plane, all within a disk of radius R (in nanometers) centered at the origin. On that same plane, the air blown by Jacques-Édouard follows a trajectory that can be described by a straight strip of width W, which comprises the area between two parallel lines at distance W, the lines themselves being included in that area. What is the minimum width W such that Jacques-Édouard can blow all the candles out if he chooses the best orientation to blow?
The first line consists of the integers N and R, separated with a space, where N is Jacques-Édouard’s age in hours. Then N lines follow, each of them consisting of the two integer coordinates xi and yi of the ith candle in nanometers, separated with a space.
Limits
3≤N≤2×105 3 ≤ N ≤ 2 × 10 5
10≤R≤2×108 10 ≤ R ≤ 2 × 10 8
for 1≤i≤N,x2i+y2i≤R2 f o r 1 ≤ i ≤ N , x i 2 + y i 2 ≤ R 2
all points have distinct coordinates
Print the value W as a floating point number. An additive or multiplicative error of 10−5 is tolerated: if y is the answer, any number either within [y − 10−5,y + 10−5] or within [(1 − 10−5)y,(1 + 10−5)y] is accepted.
3 10
0 0
10 0
0 10
7.0710678118654755
给你点的数量n
,和一个r
,(r
没用,直接忽略即可),然后再给你n
个点的坐标,问如果要用一张无限长的纸条盖住它们,纸条的宽度最少是多少。
问题等价于求凸包的最小直径,不难推出,最小的直径一定是某个点到和它最远的一条线段的距离,用旋转卡壳法即可。
#include
double R;
int n;
struct Point {
double x, y;
} point[int(2e5) + 7];
double dist(Point p1, Point p2) { // 两点间距离
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y));
}
Point intersection(Point u1, Point u2, Point v1, Point v2) { // 求两直线交点
Point ret = u1;
double tmp = ((u1.x - v1.x) * (v1.y - v2.y) - (u1.y - v1.y) * (v1.x - v2.x))
/ ((u1.x - u2.x) * (v1.y - v2.y) - (u1.y - u2.y) * (v1.x - v2.x));
ret.x += (u2.x - u1.x) * tmp;
ret.y += (u2.y - u1.y) * tmp;
return ret;
}
Point ptoline(Point p, Point line1, Point line2) { // 求垂点
Point t = p;
t.x += line1.y - line2.y, t.y += line2.x - line1.x;
return intersection(p, t, line1, line2);
}
double dist(Point a, Point l1, Point l2) { // 点到线之间的垂直距离
return dist(a, ptoline(a, l1, l2));
}
double cross_product(Point p0, Point p1, Point p2) { // 叉乘
return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}
bool cmp(const Point &p1, const Point &p2) { // 按极角排序的比较函数
double temp = cross_product(point[0], p1, p2);
if (fabs(temp) < 1e-6) return dist(point[0], p1) < dist(point[0], p2);
return temp > 0;
}
std::vector graham_scan(int n) { // 求凸包
std::vector ch;
int top = 2;
int index = 0;
for (int i = 1; i < n; ++i) {
if (point[i].y < point[index].y || (point[i].y == point[index].y && point[i].x < point[index].x)) index = i;
}
std::swap(point[0], point[index]);
ch.push_back(point[0]);
std::sort(point + 1, point + n, cmp);
ch.push_back(point[1]);
ch.push_back(point[2]);
for (int i = 3; i < n; ++i) {
while (top > 0 && cross_product(ch[top - 1], point[i], ch[top]) >= 0) {
--top;
ch.pop_back();
}
ch.push_back(point[i]);
++top;
}
return ch;
}
double solve(std::vector v) { // 旋转卡壳法
double min_dis = 1e9;
int n = int(v.size());
v.push_back(v[0]);
int j = 2;
for (int i = 0; i < n; ++i) {
while (cross_product(v[i], v[i + 1], v[j]) < cross_product(v[i], v[i + 1], v[j + 1])) {
j = (j + 1) % n;
}
min_dis = std::min(min_dis, dist(v[j], v[i], v[i + 1]));
}
return min_dis;
}
int main() {
// freopen("in.txt", "r", stdin);
scanf("%d%lf", &n, &R);
for (int i = 0; i < n; i++) scanf("%lf%lf", &point[i].x, &point[i].y);
printf("%.16f\n", solve(graham_scan(n)));
return 0;
}