- 大模型——Obsidian加Cursor就是最强个人AI知识库
不二人生
大模型人工智能爬虫大模型Obsidiancursor
大模型——Obsidian加Cursor就是最强个人AI知识库这几天因为看到了Obsidian的浏览器剪藏插件的强大(这个下节讲)所以开始玩Obsidian,想要搞一个符合自己要求的本地知识库再加上AI的加持。也装了几个Obsidian的AI插件,结果发现配置非常复杂,体验不太行,想要顺畅使用的话得看文档,甚至还有看文档都无法结局的恶性Bug,我得搜Github其他人的问题才能搞定。这些插件的作用
- C++语言学习笔记:常对象和常引用
对于既需要共享、又需要防止改变的数据应该声明为常量。一、常对象1、声明对象时用const修饰,称之为常对象。const类型说明符对象名;2、常对象的数据成员值在对象的整个生存期间不能被改变。常对象必须进行初始化,而且不能被更新。3、在定义一个变量或常量时为它指定初值叫作初始化,而在定义一个变量或常量以后使用赋值运算符修改它的值叫作赋值。4、改变对象的数据成员值有两个途径:一是通过对象名访问其成员对
- JSP学习
sakoba
学习java
文章目录什么是JSP运行原理JSP基础语法JSP表达式JSP脚本片段JSP声明jsp指令九大内置对象&四大域对象内置对象四大域对象代码JSP标签、JSTL标签、EL表达式EL表达式JSP标签JSTL标签什么是JSPJSP(JavaServerPages)是由SUN公司在1996年6月发布的一种基于Java技术的服务器端编程技术,用于开发动态Web应用。从本质上讲,它是一个简化的Servlet设计。
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- C#区块链共识的3大必杀技:PoW、PoS、DPoS谁才是代码界的“链主”?
墨瑾轩
一起学学C#【二】c#区块链开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣**3大必杀技,让你的代码成为“链主”**必杀技1:工作量证明(PoW)——“算力擂台赛”问题:为什么比特币的“矿工”要疯狂算哈希?答案:因为他们在参与“算力擂台赛”!PoW核心逻辑:
- 从阻塞到异步:Java NIO与AIO的高性能网络编程实战全解析
小张在编程
网络javanio
引言在高并发网络时代,传统BIO的“一个连接一个线程”模式早已力不从心——当万级连接涌来时,服务器线程池瞬间告急,资源耗尽的警报此起彼伏。JavaNIO与AIO的出现,如同为网络编程装上了“多线程调度器”和“异步引擎”:NIO用非阻塞机制化解并发瓶颈,让单线程管理千个连接成为可能;AIO则更进一步,通过事件回调实现真正异步,让程序在I/O等待时不再“干瞪眼”。本文将从原理到实战,带您揭开这两大高级
- C#.NET in、out、ref详解
c#.net
简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用前必须赋值典型场景ref引用传递可读可写需先在调用前初始化是修改调用者变量;传大对象避免拷贝in只读引用传递只读(不能赋值)需先在调用前初始化是传递大值类型以避免拷贝out引用传递必须在方法体内赋值调用前可未初
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- 从指令设计到系统集成:提示词工具链与GPTs插件的效率革命
charles666666
人工智能自然语言处理语言模型知识图谱transformer
一、提示词工程工具链:概念与架构解析1.1为什么需要工具链?大模型交互的本质是“指令设计”,但人工编写提示词存在三大痛点:效率低(重复调试耗时)、质量不稳定(依赖个人经验)、复用性差(场景迁移成本高)。例如,某电商企业要求AI生成500种商品描述时,人工逐条调整提示词需耗费数周,且风格难以统一。工具链的价值在于通过模块化设计与自动化流程解决上述问题。其核心架构包含三个层级:需求解析层:将用户需求拆
- 大语言模型中的思维链提示:解锁高效互动的秘密
t0_54program
大数据与人工智能语言模型人工智能自然语言处理个人开发
在当今的人工智能领域,大语言模型(LLMs)已然成为一颗耀眼的明星,它经过海量训练,能够理解并生成人类语言,在编程等诸多领域助力人们完成日常任务。然而,若想与这些模型实现高效沟通,掌握正确的请求方式至关重要,而思维链提示(Chainofthoughtprompting)便是与LLMs互动时最为高效的技术之一。什么是提示(Prompting)?LLMs基于海量数据集进行训练,以理解并生成类人文本。其
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- 随机存储器有哪些,只读存储器又有哪些
我推是大富翁
计算机组成原理计算机组成原理
一、随机存储器(RAM,易失性,断电数据丢失)1.静态RAM(SRAM)特点:用触发器存储数据,无需刷新,速度极快(纳秒级),但容量小、成本高。用途:CPU缓存(如L1/L2/L3Cache)。2.动态RAM(DRAM)特点:用电容存储,需定期刷新,速度较慢(微秒级),容量大、成本低。变种:SDRAM:同步DRAM(如DDR3/DDR4/DDR5,电脑内存条)。VRAM:显卡专用显存,支持高速图像
- SELinux 从理论到实践:深入解析与实战指南
智驾
LinuxSELinuxTEELinux安全启动
文章目录引言:为什么需要SELinux?第一部分:SELinux核心理论1.1SELinux的三大核心模型1.2安全上下文(SecurityContext)1.3策略语言与模块化第二部分:实战操作指南2.1SELinux状态管理2.2文件上下文管理2.3服务配置与排错第三部分:高级技巧与最佳实践3.1自定义策略模块开发3.2常见问题与解决方案总结:SELinux的价值与学习路径参考引言:为什么需要
- 3天狂揽2.8k星!manus 开源替代又又又又又又又来啦! 逆天AI助理Suna开源!免费替你搞定一切,效率飙升!
梦玄海
人工智能开源编辑器stablediffusiongolang
今天给大家挖来一个超级宝藏!你是不是也曾幻想过拥有一个钢铁侠的贾维斯那样,能帮你处理各种繁琐任务的AI伙伴?能在你忙得焦头烂额时,优雅地帮你完成研究、分析数据、甚至处理各种日常挑战?别再幻想了!今天的主角——Suna,就是这样一个为你而生的开源通用AI智能体!它不仅仅是一个聊天机器人,更是一个能代表你行动、解决现实世界问题的得力干(工)助(具)手(人)!在GitHub上,光发布几天的Suna项目已
- 【数据标注师】目标跟踪标注
试着
数据标注师目标跟踪人工智能计算机视觉数据标注师目标跟踪标注
目录一、**目标跟踪标注的四大核心挑战**二、**五阶能力培养体系**▶**阶段1:基础规则内化(1-2周)**▶**阶段2:复杂场景处理技能**▶**阶段3:专业工具mastery**▶**阶段4:领域深度专精▶**阶段5:效率突破方案三、**精度控制五大核心技术**四、**质检与错误防御体系**1.**四维质检法**:2.**高频错误防御表**:五、**持续进阶体系**1.**复杂场景专项**
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- 算法练习-02
亮亮爱刷题
算法数据结构c++
今天给大家带来的是第二天的几道练习题,包括几道思路特别巧妙的算法题,以及提升的背包问题,相信这类问题对大家算法能力的提升还是十分有帮助的,希望大家学完可以给博主点一个关注。第一题:问题描述给定一个长度为n的数组a,小蓝希望从数组中选择若干个元素(可以不连续),并将它们重新排列,使得这些元素能够形成一个先严格递增然后严格递减的子序列(可以没有递增部分或递减部分)。你需要求出在满足这个条件下,最多可以
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 中科亿海微SoM模组——基于FPGA+RSIC-V的计算机板卡
ehiway
fpga开发
基于FPGA+RSIC-V的计算机板卡主芯片使用中科亿海微EQ6HL45-CSG324FPGA芯片和高性能微控制器HPM6880,并集合ADCLHA6958H、6通道数字隔离器SiLM5760、SiLM5763、内存W634GU6QB等器件,板卡实现了大容量配置存储等功能的融合,为模拟信号采集、数字信号处理、逻辑控制等应用提供高性能混合信号处理通用硬件平台。图板卡硬件整体框图图板卡实物图EQ6HL
- 可编程逻辑器件的演进与对比分析
cycf
FPGA之道fpga开发
可编程逻辑器件的演进与对比分析目录离散逻辑芯片与早期PLD的限制CPLD的诞生与结构特点FPGA的架构创新CPLD与FPGA的核心差异总结1.离散逻辑芯片与早期PLD的限制在还没有发明出可编程逻辑器件(PLD:ProgrammableLogicDevice)之前,设计师们只能使用一些专用的小芯片来搭建系统,这些小芯片被称为离散逻辑芯片。这些早期的PLD产品日渐不能满足人们的需求,于是新的可编程逻辑
- 流量的代价:当“带货神话”撞上法律利剑
数据与人工智能律师
人工智能云计算区块链网络算法
首席数据官高鹏律师数字经济团队创作AI辅助一、数据洪流中的“信任坍塌”在数字经济的浪潮中,一场场直播带货的狂欢正在重塑商业生态。屏幕前的KOL们,用话术编织出商品的“完美图景”,观众在“限时折扣”“独家首发”的鼓点中按下订单键。然而,当流量红利与法律底线形成对冲,一场关于信任的博弈悄然展开。某平台头部主播曾宣称某保健品可“逆转糖尿病”,结果产品成分仅为普通压片糖果;另一直播间用“癌症克星”“三天见
- 【AI大模型】Spring AI 基于Redis实现对话持久存储详解
小码农叔叔
AI大模型应用到项目实战高手springboot入门到精通项目实战SpringAI会话存储SpringAI会话记忆SpringAI持久化会话SpringAI会话持久化SpringAI会话SpringAI记忆
目录一、前言二、SpringAI会话记忆介绍2.1SpringAI会话记忆概述2.2常用的会话记忆实现方式2.2.1集成数据库持久存储会话实现步骤2.3适用场景三、SpringAI基于内存会话记忆存储3.1本地开发环境准备3.2工程搭建与集成3.2.1添加核心依赖3.3.2添加配置文件3.3.3添加测试接口3.2ChatMemory介绍3.2.1ChatMemory概述3.2.2InMemoryC
- 【AI智能体】Coze 搭建个人旅游规划助手实战详解
小码农叔叔
AI大模型应用到项目实战高手AI智能体实战应用高手Coze制作旅游规划助手Coze制作旅游规划机器人coze搭建旅游助手coze搭建旅游助手机器人coze制作旅游助手coze机器人coze使用详解
目录一、前言二、Coze工作流介绍2.1什么是工作流2.2Coze工作流作用2.3Coze工作流节点介绍2.3.1开始节点2.3.2大模型节点2.3.3插件节点2.3.4知识库节点2.3.5条件节点三、基于Coze搭建旅游规划助手操作过程3.1创建应用3.2创建工作流3.2.1创建工作流3.2.2配置工作流3.2.2.1配置开始节点3.2.2.2增加第一个大模型节点3.2.2.3增加第二个大模型节
- 同态加密库(HElib)
deepdata_cn
同态加密同态加密
HElib是一个开源的同态加密软件库,由耶鲁大学专家开发,最初由ShaiHalevi和VictorShoup开发,CraigGentry在IBM任职期间也参与相关研究,于2013年5月5日首次发布。主要支持带自举(Bootstrapping)的Brakerski-Gentry-Vaikuntanathan(BGV)方案和近似数Cheon-Kim-Kim-Song(CKKS)方案。一、项目概述开发背
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc