图像处理之线性插值旋转算法(biline-interpolation rotate algorithm)

图像处理之线性插值旋转算法

基本数学知识:

1.三角函数基本知识,sin, cosin

2.反三角函数基本知识,知道任意一点坐标P(x, y)求取该点的角度a = atag2(y/x)

3.极坐标与笛卡尔坐标系转换知识

图像旋转矩阵:由此可以计算图像旋转以后的新的高度与宽度。


相关算法:

双线性插值算法,实现图像旋转反锯齿效果,同时是一种高质量的图像图像旋转方法,

缺点是计算量比较大。但是对现在的计算机硬件来说,速度还可以。

关于角度旋转:

1.90度,180度,270度可以直接旋转坐标取得,像素直接映射取得。

2.对于任何角度angle可以如下处理n = mod(angle, 90) = 1, 2, 3, 然后

将角度旋转90,180,270然后再旋转角度(angle– n * 90)。

程序实现:

1.首先根据输入角度参数angle, 背景填充颜色bgcolor初始化

2.计算出旋转以后的图像width与height

3.循环每个输出像素,计算机坐标

4.反旋转输入角度到输入的目标像素浮点数坐标

5.使用双线性插值完成目标像素填充,如果不在范围之内填充背景色。

6.得到输出像素数据,返回旋转后图像

原图:


旋转45度的效果,背景填充为灰色:


程序代码(特殊角度旋转自己实现吧,有点懒)

package com.gloomyfish.filter.study;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.awt.image.ColorModel;

public class RotateFilter extends AbstractBufferedImageOp {
	private double angle;
	private Color background;
	private int outw;
	private int outh;
	
	public RotateFilter() {
		this.angle = (45.0d/180.0d) * Math.PI;
		background = Color.BLACK;
		outw = -1;
		outh = -1;
	}
	
	public void setDegree(double angle) {
		this.angle = (angle/180.0d) * Math.PI;
	}
	
	public void setBackgroud(Color background) {
		this.background = background;
	}
	
    public BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel dstCM) {
        if ( dstCM == null )
            dstCM = src.getColorModel();
        return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(outw, outh), dstCM.isAlphaPremultiplied(), null);
    }

	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		int width = src.getWidth();
        int height = src.getHeight();

        int[] inPixels = new int[width*height];
        outw = (int)(width*Math.cos(angle)+height*Math.sin(angle)); 
        outh = (int)(height*Math.cos(angle)+width*Math.sin(angle));
        System.out.println("after rotate, new width : " + outw);
        System.out.println("after rotate, new height: " + outh);
        
        int[] outPixels = new int[outw*outh];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        
        int centerPixel = inPixels[height/2 * width + width/2];
        
        // calculate new center coordinate
        float centerX = outw / 2.0f + 0.5f;
        float centerY = outh /2.0f + 0.5f;
        
        // calculate the original center coordinate
        float ocenterX = width / 2.0f + 0.5f;
        float ocenterY = height /2.0f + 0.5f;
        
        float rx =0, ry = 0; //after rotated coordinate
        float px = 0, py = 0; // original coordinate
        float prow = 0, pcol = 0;
        for(int row=0; row= height) {
			return new int[]{background.getRed(), background.getGreen(), background.getBlue()};
		}
		if(col < 0 || col >= width) {
			return new int[]{background.getRed(), background.getGreen(), background.getBlue()};
		}
		
		int rowNext = (int)row + 1, colNext = (int)col + 1;
		if((row + 1) >= height) {
			rowNext = (int)row;
		}
		
		if((col + 1) >= width) {
			colNext = (int)col;
		}
		double t = prow - row;
		double u = pcol - col;
		double coffiecent1 = (1.0d-t)*(1.0d-u);
		double coffiecent2 = (t)*(1.0d-u);
		double coffiecent3 = t*u;
		double coffiecent4 = (1.0d-t)*u;
		
		int index1 = (int)(row * width + col);
		int index2 = (int)(row * width + colNext);
		
		int index3 = (int)(rowNext * width + col);
		int index4 = (int)(rowNext * width + colNext);
		int tr1, tr2, tr3, tr4;
		int tg1, tg2, tg3, tg4;
		int tb1, tb2, tb3, tb4;
		
        tr1 = (input[index1] >> 16) & 0xff;
        tg1 = (input[index1] >> 8) & 0xff;
        tb1 = input[index1] & 0xff;
        
        tr2 = (input[index2] >> 16) & 0xff;
        tg2 = (input[index2] >> 8) & 0xff;
        tb2 = input[index2] & 0xff;
        
        tr3 = (input[index3] >> 16) & 0xff;
        tg3 = (input[index3] >> 8) & 0xff;
        tb3 = input[index3] & 0xff;
        
        tr4 = (input[index4] >> 16) & 0xff;
        tg4 = (input[index4] >> 8) & 0xff;
        tb4 = input[index4] & 0xff;

        int tr = (int)(tr1 * coffiecent1 + tr2 * coffiecent4 + tr3 * coffiecent2 + tr4 * coffiecent3);
        int tg = (int)(tg1 * coffiecent1 + tg2 * coffiecent4 + tg3 * coffiecent2 + tg4 * coffiecent3);
        int tb = (int)(tb1 * coffiecent1 + tb2 * coffiecent4 + tb3 * coffiecent2 + tb4 * coffiecent3);

		return new int[]{tr, tg, tb};
	}

}
转载请务必注明

你可能感兴趣的:(图像处理之线性插值旋转算法(biline-interpolation rotate algorithm))