- AI数字人系统开发上线全攻略:从0到1全流程解析
v_qutudy
人工智能AI系统开发AI数字人开发
一、需求分析:定义数字人核心能力1.1功能规划矩阵模块基础功能进阶功能形象生成2D/3D建模实时表情捕捉与驱动语音交互TTS语音合成情感识别与应激反应动作系统预设动作库骨骼动画与物理引擎智能决策规则引擎强化学习驱动决策多模态交互文本/语音输入AR/VR空间交互1.2非功能性指标实时性:唇形同步延迟B[语音识别]A-->C[姿态检测]A-->D[文本理解]B-->E[NLP引擎]C-->F[动作解析
- 工服误检率高达40%?陌讯改进YOLOv7实战降噪50%
2501_92487859
YOLO算法视觉检测目标检测计算机视觉
开篇痛点:工业场景的视觉检测困境在工地、化工厂等高危场景,传统视觉算法面临三重挑战:环境干扰:强光/阴影导致工服颜色失真目标微小:安全帽反光标识仅占图像0.1%像素遮挡密集:工人簇拥时漏检率超35%(数据来源:CVPR2023工业检测白皮书)行业真相:某安监部门实测显示,开源YOLOv5在雾天场景误报率高达41%技术解析:陌讯算法的三大创新设计1.多模态特征融合架构#伪代码示例:可见光+红外特征融
- 路面裂缝漏检率高?陌讯多尺度检测降 30%
2501_92487936
计算机视觉opencv人工智能深度学习算法目标检测
在市政工程与公路养护领域,路面裂缝检测是保障交通安全的关键环节。传统人工巡检不仅效率低下(日均检测≤50公里),且受主观因素影响漏检率高达15-20%[1]。而主流开源视觉算法在面对阴影干扰、多类型裂缝混杂等场景时,往往陷入"精度与速度不可兼得"的困境。本文将结合实战案例,解析陌讯视觉算法在路面裂缝检测中的技术突破与落地经验。一、技术解析:从传统方法到多模态融合架构传统裂缝检测多采用"边缘检测+形
- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- Julia视频教程
Bounce_aaba
在网易云课堂上直接搜索:Julia教程,就可以找到,教程的全名是:Julia教程从入门到进阶这是国内第一个免费的完整的Julia视频教程,非常适合Julia的入门。有兴趣的朋友可以去学习一下。教程链接:https://study.163.com/course/courseMain.htm?share=2&shareId=480000001854445&courseId=1208959805&_tr
- 『大模型笔记』Geoffrey Hinton对Al研究人才选拔的直觉,未来影响及技术展望的深入见解!
AI大模型前沿研究
大模型笔记大模型人工智能Hintonllya大语言模型多模态大脑工作方式
GeoffreyHinton对Al研究人才选拔的直觉,未来影响及技术展望的深入见解!文章目录一.整个访谈内容1.1.起点:理解大脑的工作方式以及隐藏层命名的由来1.2.谈Ilya:他有很好的直觉1.3.预测下一个词也需要推理1.4.模型能从语言中学到很多,但从多模态中学习会更容易1.5.关于认知的三种观点1.6.黄仁勋送了我一块GPU1.7.数字系统有人类无法比拟的优势1.8.需要得到重视的快速权
- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- redis集群之Sentinel哨兵高可用
会飞的爱迪生
redisredissentinelbootstrap
Sentinel是官网推荐的高可用(HA)解决方案,可以实现redis的高可用,即主挂了从代替主工作,在一台单独的服务器上运行多个sentinel,去监控其他服务器上的redismaster-slave状态(可以监控多个master-slave),当发现master宕机后sentinel会在slave中选举并启动新的master。至少需要3台redis才能建立起基于哨兵的reids集群。一、通过s
- AI人工智能浪潮中文心一言的独特优势
AI人工智能浪潮中文心一言的独特优势:为什么它是中国市场的“AI主力军”?关键词:文心一言,AI大模型,中文处理,多模态融合,产业落地,安全可控,百度ERNIE摘要:在全球AI大模型浪潮中,百度文心一言(ERNIEBot)凭借“懂中文、会多模态、能落地、守规矩”的四大核心优势,成为中国市场最具竞争力的AI产品之一。本文将用“超级大脑”的比喻,从中文理解、多模态能力、产业生态融合、安全可控性四个维度
- LLM Agent在多模态任务中的推理机制详解
文章目录一、引言二、多模态LLMAgent的基本架构2.1系统组成2.2工作流程图三、多模态表示与对齐3.1跨模态嵌入空间3.2模态对齐技术四、多模态推理策略4.1基于提示的推理(Prompt-basedReasoning)4.2多模态思维链(CoT)推理4.3多模态工具使用五、实现案例:多模态问答系统5.1系统架构5.2示例应用六、高级多模态推理技术6.1多模态递归推理6.2多模态记忆与检索6.
- AI Agent 2025 大爆发:从 GPT-4o 到 Devin,下一代 Agent 架构与落地趋势深度解析
当大模型学会“看”“听”“点鼠标”,并且还能叫来一整个“Agent舰队”协同工作,软件开发、运营乃至个人生产力的游戏规则正在被重写。1|为什么Agent在2025重新引爆?模型升级带来实时多模态OpenAIGPT-4o把文本、语音、图像三路感知和毫秒级响应塞进同一模型,实时demo像“科幻电影走出屏幕”OpenAI。浏览器级自动操作新上线的OperatorAgent能在Web页面自主点击、滚动、填
- 多模态模型在RagFlow中的应用
程序猿李巡天
milvuslangchain人工智能大数据java
在RagFlow的最新版本中(0.19.0)中,为了提升对文档中各类图片的解析效果,也尝试引入了多模态模型(image2text)对图片内容进行增强解析。我们来详细分析一下相关的过程。首先需要在当前租户下配置一个image2text的模型(这里有个坑,后面会讲到),在RagFlow的文档解析过程中主要有三个场景使用到这个image2text模型,我们一一来看下:PDF文档内容提取如果配置了imag
- 多模态模型在RagFlow中的创新应用与实战案例
AGI大模型老王
人工智能DeepSeek产品经理学习AI大模型大模型教学
在RagFlow的最新版本中(0.19.0)中,为了提升对文档中各类图片的解析效果,也尝试引入了多模态模型(image2text)对图片内容进行增强解析。我们来详细分析一下相关的过程。首先需要在当前租户下配置一个image2text的模型(这里有个坑,后面会讲到),在RagFlow的文档解析过程中主要有三个场景使用到这个image2text模型,我们一一来看下:PDF文档内容提取如果配置了imag
- 占道识别漏检率 30%?陌讯多模态算法实测优化
2501_92487926
算法ai计算机视觉视觉检测
开篇:占道经营识别的三大技术痛点在城市管理智能化进程中,占道经营自动识别系统常面临三大核心难题:一是早晚光线剧变导致传统模型mAP骤降15-20%;二是流动摊贩与行人的特征混淆,误判率高达28%;三是密集场景下检测速度跌破15FPS,无法满足实时性要求[1]。某一线城市试点数据显示,基于开源YOLOv5的识别系统日均漏检事件超300起,人工复核成本占总投入的42%。这些问题的根源在于传统算法采用单
- SpringBoot3+LangChain4j:构建企业级 AI 办公助手
EyeDropLyq
人工智能AI编程AIGC
【Java开发者进阶】SpringBoot3+LangChain4j实战:打造企业级AI办公助手,领跑技术变革!一、核心技术亮点:前沿栈融合,让Java开发拥抱AI时代1.SpringBoot3与LangChain4j的黄金搭档以SpringBoot3.x为后端框架,深度集成专为Java设计的LangChain4j工具,打破“Python垄断AI开发”的固有认知。你将掌握多模态AI能力与Java系
- AI情绪识别革命:多模态数据库构建全攻略(2024最新版)
AIGC应用创新大全
人工智能数据库网络ai
AI情绪识别革命:多模态数据库构建全攻略(2024最新版)关键词:AI情绪识别、多模态数据库、图像数据、语音数据、文本数据、数据库构建、2024技术摘要:本文全面且详细地介绍2024年AI情绪识别领域中多模态数据库构建的相关知识。从背景引入,讲解多模态数据的核心概念及其关系,阐述核心算法原理与操作步骤,通过项目实战展示实际代码实现,介绍应用场景、工具资源,探讨未来趋势与挑战,并进行总结,同时给出思
- AI让我焦虑,可有解药?
大虫小呓
人工智能AIGC
被AI相关的信息搞焦虑了?这波以生成式人工智能为核心的生产力变革浪潮,从23年开始短短的两年时间里一浪接一浪的奔涌而来,从ChatGPT、AGI,到多模态大模型、Agent、Cursor,到DeepSeek、Manus,到近期的MCP协议、A2A协议等各种新概念、应用或工具的信息接连不断的往我们的脑子冲进来。就像被连续扇耳光,上一个还没反应过来下一个又来了,被扇得脑袋瓜子嗡嗡的!我发现一个普遍的现
- 大模型卷积神经网络(CNN)的架构原理
hao_wujing
cnn架构人工智能
大家读完觉得有帮助记得关注和点赞!!!一、卷积神经网络(CNN)的核心原理与架构CNN是一种专为结构化数据(如图像、文本)设计的深度学习模型,其核心在于层次化特征提取与参数高效共享,使其成为大模型中视觉和多模态任务的基础组件。1.核心结构分层解析输入层接收预处理后的数据(如图像去均值、归一化),为后续卷积操作提供标准化输入39。卷积层(核心)局部感知:每个卷积核(如3×3)仅处理输入数据的局部区域
- 智能防御原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!智能防御系统通过**AI驱动的动态感知、主动决策与自治响应**构建自适应防护体系,其核心在于将被动规则匹配升级为**预测性威胁狩猎**,实现对新型攻击(如AI生成的0day漏洞利用)的有效遏制。以下从原理、架构到技术实现进行体系化拆解:---###⚙️核心防御原理####1.**多模态威胁感知**-**跨域数据融合**:-网络层:DPI深度包检测(如Zeek解析T
- 时尚搭配助手,深度解析用Keras构建智能穿搭推荐系统
忆愿
高质量领域文章keras人工智能深度学习机器学习python
文章目录引言:当算法遇见时尚第一章数据工程:时尚系统的基石1.1数据获取的多元化途径1.2数据预处理全流程1.2.1图像标准化与增强1.2.2多模态数据处理第二章模型架构设计:从分类到推荐2.1基础CNN模型(图像分类)2.2多任务学习模型(属性联合预测)第三章推荐算法核心3.1协同过滤与内容推荐的融合第四章系统优化4.1注意力机制应用第五章实战演练5.2实时推荐API实现第六章前沿探索:时尚AI
- AIGC与自动驾驶:文心一言的车载交互设计
AI天才研究院
ChatGPT实战计算AgenticAI实战AIGC自动驾驶文心一言ai
AIGC与自动驾驶:文心一言的车载交互设计关键词:AIGC、自动驾驶、车载交互、文心一言、自然语言处理、多模态交互、用户体验摘要:本文深入探讨人工智能生成内容(AIGC)技术在自动驾驶领域的创新应用,特别是百度文心一言如何重构车载交互体验。通过解析文心一言的核心技术架构、多模态融合算法、场景化交互模型,结合具体代码实现和数学模型,揭示其在语音交互、情境理解、个性化服务等场景中的技术优势。同时通过项
- 【GitHub开源项目实战】LLM-Cookbook 中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践
GitHub开源实战|LLM-Cookbook中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践关键词LLM-Cookbook,中文大模型,Datawhale,大模型实战,LangChain应用,多模态集成,RAG系统,国产模型适配,大模型微调,开源实战解析摘要LLM-Cookbook是由Datawhale社区发起并持续维护的中文大模型应用工程实践项目,旨在系统性总结大模型在中文语境下
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- 颠覆人机交互!多模态 AI Agents 大模型如何用 5 大模式开启智能新时代?
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】文章目录GPT多模态大模型与AIAgent智能体系列七颠覆人机交互!多模态AIAgents大模型如何用5大模式开启智能新时代?一、从“单一感知”到“多模态融合”:A
- 如何学习智能体搭建
如何学习智能体搭建前言随着人工智能的发展,智能体(Agent)成为自动化、交互式应用和自主决策系统中的核心角色。本书将从零基础出发,系统讲解智能体的基本原理、常见框架、实战搭建与进阶技巧,帮助你快速上手并应用于实际项目。目录智能体基础认知智能体的核心组成主流智能体开发框架本地智能体与云端智能体选型智能体的任务自动化与插件集成智能体的知识检索与上下文管理智能体的多模态扩展智能体安全与可控性智能体实战
- AAAI—24—Main—paper(关于Multi—Modal的全部文章摘要)
我们生活在一个由多种模态(Multimodal)信息构成的世界,包括视觉信息、听觉信息、文本信息、嗅觉信息等等,当研究的问题或者数据集包含多种这样的模态信息时我们称之为多模态学习多模态机器学习旨在处理学习(视觉,听觉,语言等)不同模态融合交织的信息。下游任务(1)视觉问答1.视觉问答(visualquestionanswering,VQA).给予视觉输入(图像或视频),VQA代表了正确提供一个问题
- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 心理健康语音分析AI模型:开启心理评估新时代
AI大模型应用实战
人工智能语音识别ai
心理健康语音分析AI模型:开启心理评估新时代关键词:心理健康评估、语音信号处理、情感计算、AI模型、多模态融合摘要:传统心理评估依赖量表问卷和人工观察,存在主观性强、效率低、难以实时监测等局限。本文将带您走进“心理健康语音分析AI模型”的世界,从基础概念到核心技术,从算法原理到实战案例,揭秘AI如何通过“听声音”读懂心理状态,开启心理评估的智能化新时代。背景介绍目的和范围心理健康问题已成为全球公共
- 多模态大语言模型arxiv论文略读(151)
胖头鱼爱算法
#mllm_arxiv语言模型人工智能自然语言处理论文阅读论文笔记
ANovelMLLM-basedApproachforAutonomousDrivinginDifferentWeatherConditions➡️论文标题:ANovelMLLM-basedApproachforAutonomousDrivinginDifferentWeatherConditions➡️论文作者:SondaFourati,WaelJaafar,NouraBaccar➡️研究机构:
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文