- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- OpenCV3最常用的基本操作
HeoLis
OpenCV介绍OpenCV的全称是OpenSourceComputerVisionLibrary,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。以上是维基百科关于OpenCV的介绍,简单来说它就是处理图
- EI检索-机器视觉、图像处理与影像技术国际学术会议(MVIPIT 2023)邀您参会!
诗远Yolanda
图像处理人工智能计算机视觉
机器视觉是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。而图像处理等技术的快速发展也推动了机器视觉的发展。机器视觉在我国具有广泛的工业应用,核心功能包括:测量,检测,识别,定位等。第一届机器视觉、图像处理与影像技术国际学术会议(MVIPIT2023)将于2023年7月26日-28日在浙江杭
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 图形几何算法 -- 凸包算法
CAD三维软件二次开发
算法学习算法c#3d几何学
前言常用凸包算法包括GrahamScan算法和JarvisMarch(GiftWrapping)算法,在这里要简单介绍的是GrahamScan算法。1、概念凸包是一个点集所包围的最小的凸多边形。可以想象用一根绳子围绕着一群钉子,绳子所形成的轮廓便是这些钉子的凸包。在计算几何中,凸包得到了广泛的应用,涉及领域包括模式识别、图像处理和优化问题等。2、算法原理凸包算法的目标是从给定的点集(在二维平面中)
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 机器学习算法深度总结(5)-逻辑回归
婉妃
1.模型定义逻辑回归属于基于概率分类的学习法.基于概率的模式识别是指对模式x所对应的类别y的后验概率禁行学习.其所属类别为后验概率最大时的类别:预测类别的后验概率,可理解为模式x所属类别y的可信度.逻辑回归(logistic),使用线性对数函数对分类后验概率进行模型化:上式,分母是满足概率总和为1的约束条件的正则化项,参数向量维数为:考虑二分类问题:使用上述关系式,logistic模型的参数个数从
- 计算机视觉概念科普
极客代码
玩转AI人工智能图像处理计算机视觉深度学习
计算机视觉(ComputerVision,CV)是一门多学科交叉的科学,旨在让计算机具备“看”的能力,即通过图像或视频数据来理解世界。它结合了信号处理、图像处理、模式识别、机器学习等多个领域的技术,让计算机能够执行诸如识别、分类、追踪等复杂的视觉任务。本文将深入探讨计算机视觉的核心概念和技术。一、计算机视觉概述计算机视觉是一门研究如何让计算机“看”世界并从中获取信息的科学。它主要关注如何处理、分析
- 机器学习(ML)算法分类
活蹦乱跳酸菜鱼
机器学习
机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:一、监督学习算法监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。逻辑回归:虽然名称中包含“回归”,但实际上是用于分类问题,特别是二分类问题。通过将线性回归模
- 让数据说话:人工智能与六西格玛的完美结合
张驰课堂
人工智能六西格玛
当人工智能与六西格玛结合,企业可以充分利用人工智能技术的数据处理、预测分析和智能决策支持能力,实现数据驱动的决策、质量控制和流程优化,从而提高企业的效率和竞争力。下面张驰咨询给大家具体的介绍:1、数据驱动决策六西格玛侧重于数据分析和决策制定,而人工智能可以提供更强大的数据处理和分析能力。通过人工智能技术,可以自动收集和整理大量的数据,并进行有效的数据挖掘和模式识别。这些数据分析结果可以为六西格玛项
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- RBF神经网络中的RBF的英文全称是什么,是用来干什么的?
神笔馬良
神经网络人工智能深度学习
问题描述:RBF神经网络中的RBF的英文全称是什么,是用来干什么的?问题解答:RBF神经网络中的RBF是径向基函数(RadialBasisFunction)的缩写。径向基函数是一种在机器学习和模式识别中常用的函数类型,它们通常用于构建非线性模型。在RBF神经网络中,径向基函数被用作隐藏层的激活函数,用来将输入数据从输入空间映射到一个高维的特征空间,从而实现非线性的数据拟合和模式识别。具体来说,径向
- 用脑想问题还是用心驱动脑?
风口猪炒股指标
抢财猫股票课堂我的思想大火拼脑心关系
昨天回答了几个朋友的问题,我发现提问题的人很少,这让我想起之前讲的小妞子的故事,我问了她好几个月的同一句话:你有问题吗?结果她很反感,嘿嘿。其实吧,我讲的很多东西都是实的,反而我们感知不到的日常以为真的东西其实是不真实的。比如说眼见为实,真正是眼睛看到的是你认识的真实的吗?不是,因为你脑子里有模式识别了才被识别出来,如果脑子里没有模式就无法识别,即便眼睛看到了也会忽略掉。那追问下去,如果脑子无法识
- 【专题】2023年中国手术机器人行业专题报告PDF合集分享(附原数据表)
原文链接:https://tecdat.cn/?p=34144仿生机器人作为一类结合了仿生学原理的机器人,具备自主决策和规划行动的能力,正逐渐进入大众视野。它们的核心技术要素包括感知与认知技术、运动与控制技术、人机交互技术和自主决策技术。阅读原文,获取专题报告合集全文,解锁文末68份仿生机器人相关行业研究报告。感知与认知技术涵盖了各种传感器的应用、模式识别和情感理解等高级认知能力,而运动与控制技术
- 计算机视觉主要知识点
superdont
计算机视觉人工智能
计算机视觉是指利用计算机和算法来解析和理解图片和视频中的内容。这是一个跨学科领域,融合了计算机科学、图像处理、机器学习和模式识别等多方面的技术。以下是一些计算机视觉入门的基本知识点:图像基础:像素:图片的最基本组成单元,包含了颜色信息。色彩空间:如RGB(红、绿、蓝)、HSV(色调、饱和度、明度)等,不同色彩空间代表图像色彩的方式不同。图像类型:位图(Bitmap)与矢量图(Vector),位图由
- 探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战
繁依Fanyi
dnn人工智能神经网络深度学习机器学习gitwindows
开篇部分:人工智能、深度神经网络与内存计算的交汇在当今数字化时代,人工智能(AI)已经成为科技领域的一股强大力量,而深度神经网络(DNN)则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作方式的计算模型,通过层层堆叠的神经元网络来实现复杂的模式识别和数据处理任务。从图像识别、语音识别到自然语言处理,DNN已经在各个领域展现了惊人的能力。然而,随着DNN模型的不断演进和复杂化,对计算资源的需求
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 「论文搬运」王亦洲课题组 CVPR 2021 入选论文解读:时间序列疾病预测的因果隐马尔可夫模型
Sternstunden
论文计算机视觉人工智能深度学习cvpr
本文是对发表于计算机视觉和模式识别领域的顶级会议CVPR2021的论文“CausalHiddenMarkovModelforTimeSeriesDiseaseForecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于VAE的变分框架进行学习。通过对图
- 探秘深度学习的巅峰之作:ResNet101与其在图像识别领域的革命性应用
程序员Chino的日记
深度学习人工智能
引言深度学习和图像识别的世界已经被深度卷积神经网络的引入所革命化,而在这些网络中,ResNet101架构作为一个重要的里程碑脱颖而出。本文旨在详细探讨ResNet101架构、其设计、功能和应用。ResNet革命2015年在计算机视觉和模式识别会议(CVPR)上介绍的ResNet(残差网络)家族,标志着深度学习图像识别的一个转折点。这些网络引入了残差学习的概念,解决了深度神经网络中的梯度消失问题,使
- LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?
电力系统爱好者
lstm人工智能rnn
LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?时间序列分析是处理时间相关数据的一种方法,常用于预测、趋势分析和模式识别等应用。下面是一些常见的时间序列分析方法和相应的MATLAB代码示例:移动平均法:%计算简单移动平均data=[1,2,3,4,5,6];windowSize=3;movingAverage=movmean(data,windowSize);自回归模型(
- 机器学习简要概述
@Duang~
机器学习机器学习人工智能算法
一、基本概念及应用传统机器学习算法首先需要对数据进行特征提取,采用分类器(如决策树、人工神经网络、贝叶斯、集成学习、支持向量机等)进行分类。机器学习:特征提取+分类器分类特征提取难,制约发展。深度学习出现,一定程度解决了特征提取的难题,机器学习繁荣起来。机器学习+数据库=数据挖掘+工业应用=模式识别+图像处理=机器视觉+语音处理=语音识别+文本处理=自然语言处理二、数据集及模型数据集的划分:方法:
- 大脑的工作原理
珊珊_带你重返年轻
今天继续阅读《微习惯》第二章,大脑的工作原理。今天这一章有点烧脑。大脑分成两个部分-潜意识部分和意识部分。重复就是(潜意识)大脑使用的语言。建立习惯的目标是用重复来改变大脑。事实上改变习惯的两个关键点是重复和回报,如果有回报,大脑更愿意重复做一件事。我们的行为中有45%是自动完成的,无须思考的。大脑是由执行决策和进行自动行为模式识别的两部分组成的系统。前额皮层的管理功能相当活跃,反应灵敏,但同时也
- 计算机视觉比较有名的期刊和会议
anycedo
中文SCI级:《物理学报》《红外与毫米波学报》etc.(IF比较低,也不是特别专门针对计算机视觉)EI级:《自动化学报》《光学精密工程》《电子学报》《软件学报》《计算机研究与发展》《计算机学报》《计算机辅助设计与图形学学报》《系统工程与电子技术》、一些大学的学报,etc.(质量参差不齐)中文核心《中国图象图形学报》《模式识别与人工智能》《机器人》《图学学报》《电光与控制》etc.国际会议1.ICC
- 工信部颁发的《计算机视觉处理设计开发工程师》中级证书
人工智能技术与咨询
人工智能计算机视觉自然语言处理
计算机视觉(ComputerVision)是一门研究如何让计算机能够理解和分析数字图像或视频的学科。简单来说,计算机视觉的目标是让计算机能够像人类一样对视觉信息进行处理和理解。为实现这个目标,计算机视觉结合了图像处理、机器学习、模式识别、计算几何等多个领域的理论和技术。计算机视觉在许多领域和行业中具有广泛应用,如自动驾驶、医疗影像分析、无人机、智能监控、虚拟现实(VR)和增强现实(AR)等。随着深
- 【大厂AI课学习笔记】1.5 AI技术领域(2)语音识别
giszz
学习笔记人工智能人工智能学习笔记
今天来梳理语音识别相关的关键技术和发展脉络。语音识别:定义、关键技术、技术发展、应用场景与商业化成功一、语音识别的定义语音识别,也称为自动语音识别(ASR),是指将人类的语音转换为机器可读的文本或命令的技术。它是人机交互的重要组成部分,旨在让计算机能够理解并执行人类的语音指令。语音识别技术涉及到信号处理、模式识别、自然语言处理等多个领域的知识。二、关键技术信号处理和特征提取:语音信号是一种复杂的时
- 深度学习在智能交互中的应用:人与机器的和谐共生
wd90119
深度学习人工智能
深度学习与人类的智能交互是当前人工智能领域研究的热点之一。深度学习作为机器学习的一个重要分支,具有强大的特征学习和模式识别能力,可以模拟人脑的神经网络进行数据分析和预测。而人类的智能交互则是指人类与机器之间的信息交流和操作互动,包括语音识别、图像识别、自然语言处理等技术。深度学习与人类的智能交互相结合,可以实现更加自然、高效和智能的人机交互方式。例如,通过深度学习的语音识别技术,机器可以理解和识别
- 深度学习的进展
csdn_aspnet
深度学习人工智能
一、深度学习的基本原理和算法:深度学习是一种基于神经网络的机器学习方法,其基本原理是模仿人脑神经网络的结构和功能,通过多层次的神经网络模型来实现对数据的学习和模式识别。以下是深度学习的基本原理和算法:1、输入层:深度学习的输入层接收原始数据,这可以是图像、文本、音频等各种形式的数据。2、隐藏层:深度学习的核心是多层的隐藏层。每一层都由大量的神经元(节点)组成,每个神经元都与上一层的所有神经元相连,
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。