set_index():
函数原型:DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
参数解释:
keys:列标签或列标签/数组列表,需要设置为索引的列
drop:默认为True,删除用作新索引的列
append:默认为False,是否将列附加到现有索引
inplace:默认为False,适当修改DataFrame(不要创建新对象)
#drop的使用:
import pandas as pd
df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7','A8', 'A9', 'A10', 'A11'],
'B': ['B0', 'B1', 'B2', 'B3','B4', 'B5', 'B6', 'B7','B8', 'B9', 'B10', 'B11'],
'C': ['C0', 'C1', 'C2', 'C3','C4', 'C5', 'C6', 'C7','C8', 'C9', 'C10', 'C11'],
'D': ['D0', 'D1', 'D2', 'D3','D4', 'D5', 'D6', 'D7','D8', 'D9', 'D10', 'D11']})
print (df)
new_df_drop_t = df.set_index('A',drop=True, append=False, inplace=False, verify_integrity=False)
print (new_df_drop_t)
new_df_drop_f = df.set_index('A',drop=False, append=False, inplace=False, verify_integrity=False)
print (new_df_drop_f)
'''
输出结果:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
B C D
A
A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4
A5 B5 C5 D5
A6 B6 C6 D6
A7 B7 C7 D7
A8 B8 C8 D8
A9 B9 C9 D9
A10 B10 C10 D10
A11 B11 C11 D11
A B C D
A
A0 A0 B0 C0 D0
A1 A1 B1 C1 D1
A2 A2 B2 C2 D2
A3 A3 B3 C3 D3
A4 A4 B4 C4 D4
A5 A5 B5 C5 D5
A6 A6 B6 C6 D6
A7 A7 B7 C7 D7
A8 A8 B8 C8 D8
A9 A9 B9 C9 D9
A10 A10 B10 C10 D10
A11 A11 B11 C11 D11
'''
# append的使用
import pandas as pd
df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7','A8', 'A9', 'A10', 'A11'],
'B': ['B0', 'B1', 'B2', 'B3','B4', 'B5', 'B6', 'B7','B8', 'B9', 'B10', 'B11'],
'C': ['C0', 'C1', 'C2', 'C3','C4', 'C5', 'C6', 'C7','C8', 'C9', 'C10', 'C11'],
'D': ['D0', 'D1', 'D2', 'D3','D4', 'D5', 'D6', 'D7','D8', 'D9', 'D10', 'D11']})
new_df_append_t = df.set_index('A',drop=True, append=True, inplace=False, verify_integrity=False)
print (new_df_append_t)
new_df_append_f = df.set_index('A',drop=True, append=False, inplace=False, verify_integrity=False)
print (new_df_append_f)
'''
输出结果:
B C D
A
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
B C D
A
A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4
A5 B5 C5 D5
A6 B6 C6 D6
A7 B7 C7 D7
A8 B8 C8 D8
A9 B9 C9 D9
A10 B10 C10 D10
A11 B11 C11 D11
'''
# inplace的使用,这里我也没搞懂为啥输出None
df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7','A8', 'A9', 'A10', 'A11'],
'B': ['B0', 'B1', 'B2', 'B3','B4', 'B5', 'B6', 'B7','B8', 'B9', 'B10', 'B11'],
'C': ['C0', 'C1', 'C2', 'C3','C4', 'C5', 'C6', 'C7','C8', 'C9', 'C10', 'C11'],
'D': ['D0', 'D1', 'D2', 'D3','D4', 'D5', 'D6', 'D7','D8', 'D9', 'D10', 'D11']})
new_df_inplace_t = df.set_index('A', drop=True, append=False, inplace=True, verify_integrity=False)
print (new_df_inplace_t)
print (type(new_df_inplace_t))
df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7','A8', 'A9', 'A10', 'A11'],
'B': ['B0', 'B1', 'B2', 'B3','B4', 'B5', 'B6', 'B7','B8', 'B9', 'B10', 'B11'],
'C': ['C0', 'C1', 'C2', 'C3','C4', 'C5', 'C6', 'C7','C8', 'C9', 'C10', 'C11'],
'D': ['D0', 'D1', 'D2', 'D3','D4', 'D5', 'D6', 'D7','D8', 'D9', 'D10', 'D11']})
new_df_inplace_f = df.set_index('A', drop=True, append=False, inplace=False, verify_integrity=False)
print (new_df_inplace_f)
'''
None
B C D
A
A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4
A5 B5 C5 D5
A6 B6 C6 D6
A7 B7 C7 D7
A8 B8 C8 D8
A9 B9 C9 D9
A10 B10 C10 D10
A11 B11 C11 D11
'''
reset_index():
函数原型:DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=’’)
参数解释:
level:int、str、tuple或list,默认无,仅从索引中删除给定级别。默认情况下移除所有级别。控制了具体要还原的那个等级的索引
drop:drop为False则索引列会被还原为普通列,否则会丢失
inplace:默认为false,适当修改DataFrame(不要创建新对象)
col_level:int或str,默认值为0,如果列有多个级别,则确定将标签插入到哪个级别。默认情况下,它将插入到第一级。
col_fill:对象,默认‘’,如果列有多个级别,则确定其他级别的命名方式。如果没有,则重复索引名
注:reset_index还原分为两种类型,第一种是对原DataFrame进行reset,第二种是对使用过set_index()函数的DataFrame进行reset
第一种:
# 一般情况下只使用到drop,这里只演示drop的使用
import pandas as pd
df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7','A8', 'A9', 'A10', 'A11'],
'B': ['B0', 'B1', 'B2', 'B3','B4', 'B5', 'B6', 'B7','B8', 'B9', 'B10', 'B11'],
'C': ['C0', 'C1', 'C2', 'C3','C4', 'C5', 'C6', 'C7','C8', 'C9', 'C10', 'C11'],
'D': ['D0', 'D1', 'D2', 'D3','D4', 'D5', 'D6', 'D7','D8', 'D9', 'D10', 'D11']})
print (df)
newdf = df.set_index('A',drop=True, append=False, inplace=False, verify_integrity=False)
# 这里的drop必需为True,否则会报错ValueError: cannot insert A, already exists(意思是...只可意会不可言传哈哈)
print (newdf)
new_reset_index = newdf.reset_index(drop=False) #索引列会被还原为普通列
print (new_reset_index)
new_reset_index = newdf.reset_index(drop=True) #索引回被直接删除
print (new_reset_index)
'''
输出结果:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
B C D
A
A0 B0 C0 D0
A1 B1 C1 D1
A2 B2 C2 D2
A3 B3 C3 D3
A4 B4 C4 D4
A5 B5 C5 D5
A6 B6 C6 D6
A7 B7 C7 D7
A8 B8 C8 D8
A9 B9 C9 D9
A10 B10 C10 D10
A11 B11 C11 D11
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
B C D
0 B0 C0 D0
1 B1 C1 D1
2 B2 C2 D2
3 B3 C3 D3
4 B4 C4 D4
5 B5 C5 D5
6 B6 C6 D6
7 B7 C7 D7
8 B8 C8 D8
9 B9 C9 D9
10 B10 C10 D10
11 B11 C11 D11
'''
第二种
# 一般情况下只使用到drop,这里只演示drop的使用
import pandas as pd
df = pd.DataFrame({ 'A': ['A0', 'A1', 'A2', 'A3','A4', 'A5', 'A6', 'A7','A8', 'A9', 'A10', 'A11'],
'B': ['B0', 'B1', 'B2', 'B3','B4', 'B5', 'B6', 'B7','B8', 'B9', 'B10', 'B11'],
'C': ['C0', 'C1', 'C2', 'C3','C4', 'C5', 'C6', 'C7','C8', 'C9', 'C10', 'C11'],
'D': ['D0', 'D1', 'D2', 'D3','D4', 'D5', 'D6', 'D7','D8', 'D9', 'D10', 'D11']})
print (df)
new_reset_index = df.reset_index(drop=False) # 原有的索引不变添加列名index,同时在新列上重置索引
print (new_reset_index)
new_reset_index = df.reset_index(drop=True) # 在原有的索引列重置索引,不再另外添加新列。
print (new_reset_index)
'''
输出结果:
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
index A B C D
0 0 A0 B0 C0 D0
1 1 A1 B1 C1 D1
2 2 A2 B2 C2 D2
3 3 A3 B3 C3 D3
4 4 A4 B4 C4 D4
5 5 A5 B5 C5 D5
6 6 A6 B6 C6 D6
7 7 A7 B7 C7 D7
8 8 A8 B8 C8 D8
9 9 A9 B9 C9 D9
10 10 A10 B10 C10 D10
11 11 A11 B11 C11 D11
A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
8 A8 B8 C8 D8
9 A9 B9 C9 D9
10 A10 B10 C10 D10
11 A11 B11 C11 D11
'''