- HIVE开窗函数
Cciccd
sqlhive
ETL,SQL面试高频考点——HIVE开窗函数(基础篇)目录标题ETL,SQL面试高频考点——HIVE开窗函数(基础篇)一,窗口函数介绍二,开窗函数三,分析函数分类1,排序分析函数:实列解析对比总结2.聚合分析函数3.用spark自定义HIVE用户自定义函数后续更新中~一,窗口函数介绍窗口函数,也叫OLAP函数(OnlineAnallyticalProcessing,联机分析处理),可以对数据库数
- Hive MR & Spark & Yarn参数优化总结
大数据侠客
hive相关问题汇总及解决hivesparkmryarn参数优化
一、hivemr参数调优:sethive.optimize.ppd=true;--开启谓词下推。--动态分区参数sethive.exec.mode.local.auto=true;sethive.exec.dynamic.partition.mode=nonstrict;--默认是strict,表示至少有一个静态分区,nonstri
- Spark 中创建 DataFrame 的2种方式对比
闯闯桑
spark大数据分布式scala
spark.createDataFrame(data).toDF("name","age")和spark.createDataFrame(spark.sparkContext.parallelize(data),schema)创建df的方式有什么区别?在Spark中,创建DataFrame的方式有多种,其中两种常见的方式是:spark.createDataFrame(data).toDF("nam
- python手写kmeans算法
菜鸟懿
机器学习聚类算法python
kmean聚类是最基础和常见的算法,工程上使用比较常见,spark,sklearn都有实现,本文手写实现kmeans#!/usr/bin/pythonimportsysimportrandomimportmathdefcreate_rand_points(max_x,max_y,count):"""Createcountpoints(0-x),(0-y)."""points=[]foriinran
- 数据分析大数据面试题大杂烩01
爱学习的菜鸟罢了
大数据flink大数据面试hivehadoopkafka
互联网:通过埋点实时计算用户浏览频次用优惠券等措施吸引用户,通过历史信息用非智能学习的title方式构造用户画像(抖音,京东)电信,银行统计营收和针对用户的个人画像:处理大量非实时数据政府:健康码,扫码之后确诊,找出与确诊对象有关联的人订单订单表(除商品以外所有信息),商品详情表,通过搜集用户title进行定制化推荐点击流数据通过埋点进行用户点击行为分析FLINK一般用来做实时SPARK一般用来做
- doris:SQL 方言兼容
向阳1218
大数据doris
提示从2.1版本开始,Doris可以支持多种SQL方言,如Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse等等。通过这个功能,用户可以直接使用对应的SQL方言查询Doris中的数据,方便用户将原先的业务平滑的迁移到Doris中。警告该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHubIssue等方式进行反馈。部署服务下载最新版
- 25年大数据开发省赛样题第一套,离线数据处理答案
Tometor
大数据sparkscala
省赛样题一,数据抽取模块这一模块的作用是从mysql抽取数据到ods层进行指标计算,在题目中要求进行全量抽取,并新增etl-date字段进行分区,日期为比赛前一天importorg.apache.spark.sql.SparkSessionimportjava.util.PropertiesobjectTask1{defmain(args:Array[String]):Unit={valspark
- sparkML入门,通俗解释机器学习的框架和算法
Tometor
spark-ml机器学习算法回归数据挖掘人工智能scala
一、机器学习的整体框架(类比烹饪)假设你要做一道菜,机器学习的过程可以类比为:步骤-->烹饪类比-->机器学习对应1.确定目标|想做什么菜(红烧肉/沙拉)|明确任务(分类/回归/聚类)2.准备食材|买菜、洗菜、切菜|数据收集与预处理3.设计食谱|决定烹饪步骤和调料|选择算法和模型设计4.试做并尝味道|调整火候和调味|模型训练与调参5.最终成品|端上桌的菜|模型部署与应用二、机器学习的核心流程1.数
- 大数据面试之路 (三) mysql
愿与狸花过一生
大数据面试职场和发展
技术选型通常也是被问道的问题,一方面考察候选人对技术掌握程度,另一方面考察对项目的理解,以及项目总结能力。介绍项目是从数据链路介绍,是一个很好来的方式,会让人觉得思路清晰,项目理解透彻。将SparkSQL加工后的数据存入MySQL通常基于以下几个关键原因:1.数据应用场景适配OLTP与OLAP分工:SparkSQL擅长处理大数据量的OLAP(分析型)任务,而MySQL作为OLTP(事务型)数据库,
- 如何使用 SparkLLM 进行自然语言处理
shuoac
python
在当代自然语言处理领域,拥有强大的跨域知识和语言理解能力的模型至关重要。iFLYTEK开发的SparkLLM便是这样一个大规模认知模型。通过学习大量文本、代码和图像,SparkLLM能够理解和执行基于自然对话的任务。在本文中,我们将深入探讨如何配置和使用SparkLLM来处理自然语言任务。技术背景介绍大规模语言模型(LLM)近年来在各个领域中获得了广泛的应用,它们在处理自然语言任务时表现出色。iF
- RDD 行动算子
阿强77
RDDSpark
在ApacheSpark中,RDD(弹性分布式数据集)是核心数据结构之一。行动算子会触发实际的计算并返回结果或执行某些操作。以下是Scala中常见的RDD行动算子:1.collect()将RDD中的所有数据收集到驱动程序中,并返回一个数组。注意:如果数据集很大,可能会导致内存不足。valdata:Array[T]=rdd.collect()2.count()返回RDD中元素的总数。valcount
- 讲一下Spark的shuffle过程
冰火同学
Sparkspark大数据分布式
首先Spark的shuffle是Spark分布式集群计算的核心。Spark的shuffle可以从shuffle的阶段划分,shuffle数据存储,shuffle的数据拉取三个方面进行讲解。首先shuffle的阶段分为shuffle的shufflewrite阶段和shuffleread阶段。shufflewrite的触发条件就是上游的Stage任务shuffleMapTask完成计算后,会哪找下游S
- Spark常见面试题目(1)
冰火同学
Sparkspark面试大数据
Spark有哪几种部署的方式,谈谈方式都有哪些特点第一种是local本地部署,通常就是一台机器用于测试。第二种是standalone部署模式,就是一个master节点,控制几个work节点,其实一台机器的standalone模式就是它自己即是master,又是work。第三种是yarn模式,就是吧spark交给yarn进行资源调度管理。第四种就是messon模式,这种在国内很少见到。Spark主备
- Spark数据倾斜的问题
冰火同学
Sparkspark大数据分布式
Spark数据倾斜业务背景Spark数据倾斜表现Spark的数据倾斜,包括SparkStreaming和SparkSQL,表现主要有下面几种:1、Excutorlost,OOM,Shuffle过程出错2、DriverOOM3、单个Excutor执行器一直在运行,整体任务卡在某个阶段不能结束4、正常运行的任务突然失败数据倾斜产生的原因以Spark使用场景为例,我们再做数据计算的时候会涉及类似coun
- PySpark实现导出两个包含多个Parquet数据文件的S3目录里的对应值的差异值分析
weixin_30777913
pythonspark数据分析云计算
编写PySpark代码实现从一个包含多个Parquet数据文件的AmazonS3目录的dataframe数据里取两个维度字段,一个度量字段的数据,根据这两个维度字段的数据分组统计,计算度量字段的数据的分组总计值,得到一个包含两个维度字段和度量字段的分组总计值字段的dataframe,再从另一个包含多个Parquet数据文件的S3目录的dataframe数据里取两个维度字段,一个度量字段的数据组成一
- Hadoop、Spark和 Hive 的详细关系
夜行容忍
hadoopsparkhive
Hadoop、Spark和Hive的详细关系1.ApacheHadoopHadoop是一个开源框架,用于分布式存储和处理大规模数据集。核心组件:HDFS(HadoopDistributedFileSystem):分布式文件系统,提供高吞吐量的数据访问。YARN(YetAnotherResourceNegotiator):集群资源管理和作业调度系统。MapReduce:基于YARN的并行处理框架,用
- 大数据技术生态圈:Hadoop、Hive、Spark的区别和关系
雨中徜徉的思绪漫溢
大数据hadoophive
大数据技术生态圈:Hadoop、Hive、Spark的区别和关系在大数据领域中,Hadoop、Hive和Spark是三个常用的开源技术,它们在大数据处理和分析方面发挥着重要作用。虽然它们都是为了处理大规模数据集而设计的,但它们在功能和使用方式上存在一些区别。本文将详细介绍Hadoop、Hive和Spark的区别和关系,并提供相应的源代码示例。Hadoop:Hadoop是一个用于分布式存储和处理大规
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- scala针对复杂数据源导入与分隔符乱码处理
Tometor
scalajavascript后端java数据结构
复杂的数据源,和奇怪的数据格式是生产中经常遇到的难题,本文将探讨如何解析分隔符混乱的数据,和如何导入各种数据源文件一、非标准分隔符处理当数据源的分隔符混乱或不统一时(如,、|、\t混合使用),可采用以下方法:1.1动态检测分隔符//示例:自动检测前100行的常用分隔符valsampleLines=spark.read.text("data.csv").limit(100).collect()val
- Spark-TTS:基于大模型的文本语音合成工具
CITY_OF_MO_GY
魅力语音语音识别深度学习人工智能
GitHub:https://github.com/SparkAudio/Spark-TTSSpark-TTS是一个先进的文本到语音系统,它利用大型语言模型(LLM)的强大功能进行高度准确和自然的语音合成;旨在高效、灵活、强大地用于研究和生产用途。一、介绍SparkTTS完全基于Qwen2.5构建,无需额外的生成模型,它不依赖于单独的模型来生成声学特征,而是直接从LLM预测的代码中重建音频。这种方
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 大数据实战:Spark + Hive 逐笔计算用户盈亏
WuJiWeb3
区块链链上数据分析从0到1搭建区块链大数据平台sparkhive大数据web3区块链hadoop
简介本文将通过使用Spark+Hive实现逐笔计算区块链上用户交易数据的盈亏需求。由于我们是进行离线计算,所以我们的数据源是Hive表数据,Sink表也是Hive表,即Spark读取Hive表数据进行批计算之后写回到Hive表并供后续使用。通过本文你将会学到:如何使用SparkSQLAPI读取Hive数据源如何通过读取配置文件进行传参执行SQL如何将SparkSQL转换为JavaRDD进行处理如何
- 分布式计算入门(PySpark处理NASA服务器日志)
闲人编程
Python数据分析实战精要服务器运维统计分析日志NASA服务器分布式计算PySpark
目录分布式计算入门(PySpark处理NASA服务器日志)1.引言2.分布式计算概述2.1分布式计算的基本概念2.2ApacheSpark与PySpark3.NASA服务器日志数据集介绍3.1数据背景3.2数据格式与挑战4.PySpark基础与分布式日志处理4.1PySpark基本架构4.2日志数据加载与解析4.3数据清洗与内存优化4.4GPU加速与SparkRAPIDS5.实验环境与依赖库6.数
- Dask vs. Apache Spark: 大数据处理的利器对比与应用实例
步入烟尘
Python超入门指南全册apachespark大数据
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- spark yum配置
Amu_Yalo
spark
yum配置Yum是一个linux工具,用来从网络上下载安装软件到CentOS操作系统中。先要确保虚拟机的网络是通畅的。(1)查看源yum中的源是指它从哪里去下载软件。把yum想象成你自己开的一家商场,那么yum的源就是你的供货商。通过yumrepolist命令可以去查看当前的供货商信息。(如果显示源信息是mirrorlist.centos.org(默认源),那就不能使用了。这个源已经失效了,就是你
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- Scala_Spark_RDD_parttwo
Gadaite
Spark基础scalasparkbigdata
只做记录不展示结果(部分结果放在了代码的注释中):packagespark_rddimportorg.apache.spark.sql.SparkSessionobjectrdd_fiveextendsApp{overridedefmain(args:Array[String]):Unit={/***key-valueRDD*pairRDD*2021-10-31*/valp="-----"*20v
- Spark scala api(一)RDD编程
weixin_42521881
spark学习
基础初始化sparkvalconf=newSparkConf().setAppName("wordcount")valsc=newSparkContext(conf)转化操作和行动操作的区别在于spark计算rdd的方式不同,只有在第一次在一个行动操作中用到转化操作中的rdd时,才会真正计算这些rdd。创建rdd//驱动器程序对一个集合进行并行化vallines=sc.parallelize(Li
- Scala 中生成一个RDD的方法
闯闯桑
scala开发语言大数据
在Scala中,生成RDD(弹性分布式数据集)的主要方法是通过SparkContext(或SparkSession)提供的API。以下是生成RDD的常见方法:1.从本地集合创建RDD使用parallelize方法将本地集合(如Seq、List、Array等)转换为RDD。valspark=SparkSession.builder.appName("RDDExample").getOrCreate(
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s