grouby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
import pandas as pd
df = pd.DataFrame(data={'books':['bk1','bk1','bk1','bk2','bk2','bk3'], 'price': [12,12,12,15,15,17]})
print df
print
print df.groupby('books', as_index=True).sum()
print
print df.groupby('books', as_index=False).sum()
books price
0 bk1 12
1 bk1 12
2 bk1 12
3 bk2 15
4 bk2 15
5 bk3 17
price
books
bk1 36
bk2 30
bk3 17
books price
0 bk1 36
1 bk2 30
2 bk3 17
When as_index=True the key(s) you use in groupby will become an index in the new dataframe.
The benefit of as_index=True is that you can yank out the rows you want by using key names. For eg. if you want ‘bk1’ you can get it like this: df.loc[‘bk1’] as opposed to when as_index=Falsethen you will have to get it like this: df.loc[df.books==‘bk1’]
Including the other main benefit of using as_index=True raised by @ayhan in comments: df.loc[‘bk1’] would be faster because it doesn’t have to traverse the entire books column to find ‘bk1’ when it’s indexed. It will just calculate the hash value of ‘bk1’ and find it in 1 go.