1. ARM的栈帧
先来看看ARM的栈帧布局图:
上图描述的是ARM的栈帧布局方式,main stack frame为调用函数的栈帧,func1 stack frame为当前函数(被调用者)的栈帧,栈底在高地址,栈向下增长。图中FP就是栈基址,它指向函数的栈帧起始地址;SP则是函数的栈指针,它指向栈顶的位置。ARM压栈的顺序很是规矩,依次为当前函数指针PC、返回指针LR、栈指针SP、栈基址FP、传入参数个数及指针、本地变量和临时变量。如果函数准备调用另一个函数,跳转之前临时变量区先要保存另一个函数的参数。
ARM也可以用栈基址和栈指针明确标示栈帧的位置,栈指针SP一直移动,相比于x86,ARM更为鲜明的特点是,两个栈空间内的地址(SP+FP)前面,必然有两个代码地址(PC+LR)明确标示着调用函数位置内的某个地址。
先来看看ARM的栈帧布局图:
上图描述的是ARM的栈帧布局方式,main stack frame为调用函数的栈帧,func1 stack frame为当前函数(被调用者)的栈帧,栈底在高地址,栈向下增长。图中FP就是栈基址,它指向函数的栈帧起始地址;SP则是函数的栈指针,它指向栈顶的位置。ARM压栈的顺序很是规矩,依次为当前函数指针PC、返回指针LR、栈指针SP、栈基址FP、传入参数个数及指针、本地变量和临时变量。如果函数准备调用另一个函数,跳转之前临时变量区先要保存另一个函数的参数。
ARM也可以用栈基址和栈指针明确标示栈帧的位置,栈指针SP一直移动,相比于x86,ARM更为鲜明的特点是,两个栈空间内的地址(SP+FP)前面,必然有两个代码地址(PC+LR)明确标示着调用函数位置内的某个地址。
2. ARM的汇编指令和栈操作
ARM微处理器共有37个寄存器,其中31个为通用寄存器,6个为状态寄存器。但是这些寄存器不能被同时访问,具体哪些寄存器是可编程访问的,取决于微处理器的工作状态及具体的运行模式。但在任何时候,通用寄存器R0~R15、一个或两个状态寄存器都是可访问的。有三个特殊的通用寄存器:
寄存器R13:在ARM指令中常用作堆栈指针SP
寄存器R14:也称作子程序连接寄存器(Subroutine Link Register)即连接寄存器LR
寄存器R15:也称作程序计数器PC
ARM进行函数内压栈和出栈往往使用如下的语句:
stmfd sp!, {r0-r9, lr} ; 满递减入栈,给寄存器r0-r9,lr压栈,sp不断减4
ldmfd sp!, {r0-r9, pc} ; 满递减出栈,给寄存器r0-r9出栈,并使程序跳转回函数的调用点,sp不断增4
常用的函数内外跳转指令有mov和BL,ARM有两种跳转方式:
(1)mov pc, <跳转地址〉
这种向程序计数器PC直接写跳转地址,能在4GB连续空间内任意跳转。
(2)通过 B BL BLX BX 可以完成在当前指令向前或者向后32MB的地址空间的跳转(为什么是32MB呢?寄存器是32位的,此时的值是24位有符号数,所以32MB?后面再查查看)。B是最简单的跳转指令。要注意的是,跳转指令的实际值不是绝对地址,而是相对地址——是相对当前PC值的一个偏移量,它的值由汇编器计算得出。BL很常用,它在跳转之前会在寄存器LR(R14)中保存PC的当前内容。BL的经典用法如下:
bl NEXT ; 跳转到NEXT
……
NEXT
……
mov pc, lr ; 从子程序返回。
ARM微处理器共有37个寄存器,其中31个为通用寄存器,6个为状态寄存器。但是这些寄存器不能被同时访问,具体哪些寄存器是可编程访问的,取决于微处理器的工作状态及具体的运行模式。但在任何时候,通用寄存器R0~R15、一个或两个状态寄存器都是可访问的。有三个特殊的通用寄存器:
寄存器R13:在ARM指令中常用作堆栈指针SP
寄存器R14:也称作子程序连接寄存器(Subroutine Link Register)即连接寄存器LR
寄存器R15:也称作程序计数器PC
ARM进行函数内压栈和出栈往往使用如下的语句:
stmfd sp!, {r0-r9, lr} ; 满递减入栈,给寄存器r0-r9,lr压栈,sp不断减4
ldmfd sp!, {r0-r9, pc} ; 满递减出栈,给寄存器r0-r9出栈,并使程序跳转回函数的调用点,sp不断增4
常用的函数内外跳转指令有mov和BL,ARM有两种跳转方式:
(1)mov pc, <跳转地址〉
这种向程序计数器PC直接写跳转地址,能在4GB连续空间内任意跳转。
(2)通过 B BL BLX BX 可以完成在当前指令向前或者向后32MB的地址空间的跳转(为什么是32MB呢?寄存器是32位的,此时的值是24位有符号数,所以32MB?后面再查查看)。B是最简单的跳转指令。要注意的是,跳转指令的实际值不是绝对地址,而是相对地址——是相对当前PC值的一个偏移量,它的值由汇编器计算得出。BL很常用,它在跳转之前会在寄存器LR(R14)中保存PC的当前内容。BL的经典用法如下:
bl NEXT ; 跳转到NEXT
……
NEXT
……
mov pc, lr ; 从子程序返回。
看代码:
int func(int a, int b, int c, int d)
{
return 1;
}
int main()
{
int i = 1, j = 2;
func(i, j, 3, 4);
return 0;
}
使用arm-linux-gcc编译后,使用ida打开:
.text:000083D0 EXPORT main
.text:000083D0 main ; DATA XREF: .text:000082C4o
.text:000083D0 ; .text:off_82DCo
.text:000083D0
.text:000083D0 b = -0x14
.text:000083D0 a = -0x10
.text:000083D0
.text:000083D0 IP = R12
.text:000083D0 FP = R11
.text:000083D0 MOV IP, SP
.text:000083D4 STMFD SP!, {FP,IP,LR,PC}
.text:000083D8 SUB FP, IP, #4
.text:000083DC SUB SP, SP, #8
.text:000083E0 MOV R3, #1
.text:000083E4 STR R3, [FP,#a]
.text:000083E8 MOV R3, #2
.text:000083EC STR R3, [FP,#b]
.text:000083F0 LDR R0, [FP,#a]
.text:000083F4 LDR R1, [FP,#b]
.text:000083F8 MOV R2, #3
.text:000083FC MOV R3, #4
.text:00008400 BL func
.text:00008404 MOV R3, #0
.text:00008408 MOV R0, R3
.text:0000840C SUB SP, FP, #0xC
.text:00008410 LDMFD SP, {FP,SP,PC}
.text:00008410 ; End of function main
可以发现,在main函数中,使用IP(R12)暂时保存栈指针sp,然后使用堆栈操作指令stmfd将栈帧(FP)、IP、程序返回地址(LR)、程序计数器(PC)压栈,以保护现场,然后使用sub fp,ip,#4使fp指向当前函数栈帧的栈底,sub sp,sp,#8,为当前函数局部变量分配看空间。接下来通过寄存器传递参数r1,r2,r3,r4。使用BL指令调用函数,BL指令同时也会将当前指令的下一条指令地址赋给LR,以跳转回来。最后使用ldmfd恢复现场。
.text:000083A0 ; =============== S U B R O U T I N E =======================================
.text:000083A0
.text:000083A0 ; Attributes: bp-based frame
.text:000083A0
.text:000083A0 EXPORT func
.text:000083A0 func ; CODE XREF: main+30p
.text:000083A0
.text:000083A0 var_1C = -0x1C
.text:000083A0 var_18 = -0x18
.text:000083A0 var_14 = -0x14
.text:000083A0 var_10 = -0x10
.text:000083A0
.text:000083A0 MOV R12, SP
.text:000083A4 STMFD SP!, {R11,R12,LR,PC}
.text:000083A8 SUB R11, R12, #4
.text:000083AC SUB SP, SP, #0x10
.text:000083B0 STR R0, [R11,#var_10]
.text:000083B4 STR R1, [R11,#var_14]
.text:000083B8 STR R2, [R11,#var_18]
.text:000083BC STR R3, [R11,#var_1C]
.text:000083C0 MOV R3, #1
.text:000083C4 MOV R0, R3
.text:000083C8 SUB SP, R11, #0xC
.text:000083CC LDMFD SP, {R11,SP,PC}
.text:000083CC ; End of function func
.text:000083CC
.text:000083D0
.text:000083D0 ; =============== S U B R O U T I N E =======================================
参考:
http://blog.chinaunix.net/uid-16459552-id-3364761.html
http://m.blog.csdn.net/blog/u011405813/41899197