- 深度学习主流开源框架:Caffe、TensorFlow、Pytorch、Theano、Keras、MXNet、Chainer
seasonsyy
深度学习小知识深度学习开源框架pytorch
2.6深度学习主流开源框架表2.1深度学习主流框架参数对比框架关键词总结框架关键词基本数据结构(都是高维数组)Caffe“在工业中应用较为广泛”,“编译安装麻烦一点”BlobTensorFlow“安装简单pip”TensorPytorch“定位:快速实验研究”,“简单”,“灵活”TensorTheanoד用于处理大规模神经网络的训练”,“不支持移动设备”,“不能应用于工业环境”,“编译复杂模型时
- onnx基础
whyte王
python
初次编辑时间:2024/2/7;最后编辑时间:2024/2/12定义:ONNX(OpenNeuralNetworkExchange)是一种开放式的文件格式,用于存储训练好的机器学习模型。它使得不同的人工智能框架(如PyTorch、MXNet、Tensorflow)可以采用相同格式存储模型数据并交互。Basic当我们加载了一个ONNX之后,我们获得的就是一个ModelProto,它包含了一些版本信息
- MxNet源码解析(1) KVStore,pslite源码解析
Junr_0926
1.前言从毕业开始工作已经两个多月,这期间相当一部分的时间都用在了对MxNet的学习上,而在MxNet的众多部分中,又是pslite这一部分接触最多。因此,今天将我一直以来的学习过程中的心得和收获总结在这里,也为以后对MxNet的继续学习做一个铺垫2.MxNet构成MxNet作为一个深度学习框架,它最大的特点应该是分布式训练的支持了。从初次接触MxNet到现在的两个多月里,我认为MxNet主要有以
- 人脸识别数据集整理
想努力的人
人脸识别深度学习人工智能计算机视觉
转自:人脸识别数据集整理-陈晓涛-博客园insightface提供整理了mtcnn裁剪112x112,mxnet二进制方式保存的数据集https://github.com/deepinsight/insightface/wiki/Dataset-Zoo人脸识别训练数据集:CASIA-Webface(10Kids/0.5Mimages)CASIAWebFaceDataset是一个大规模人脸数据集,主
- 深度学习-随机梯度下降
白云如幻
PyTorch深度学习机器学习算法人工智能
在训练过程中使用随机梯度下降,但没有解释它为什么起作用。为了澄清这一点,将继续更详细地说明随机梯度下降(stochasticgradientdescent)。%matplotlibinlineimportmathfrommxnetimportnp,npxfromd2limportmxnetasd2lnpx.set_np()随机梯度更新在深度学习中,目标函数通常是训练数据集中每个样本的损失函数的平均
- 动手学深度学习(二)——正则化(从零开始)
SnailTyan
文章作者:Tyan博客:noahsnail.com|CSDN|注:本文为李沐大神的《动手学深度学习》的课程笔记!高维线性回归使用线性函数$y=0.05+\sum_{i=1}^p0.01x_i+\text{noise}$生成数据样本,噪音服从均值0和标准差为0.01的正态分布。#导入mxnetimportrandomimportmxnetasmx#设置随机种子random.seed(2)mx.ran
- 2023-2024深度学习框架之争——选pytorch还是tensorflow?
NCHU-Net
人工智能人工智能深度学习pytorchtensorflow
深度学习是人工智能领域的一个重要分支,它利用多层神经网络来模拟人类的学习和推理能力,解决各种复杂的问题,如图像识别、自然语言处理、语音识别、推荐系统等。深度学习框架是一种软件工具,它提供了构建、训练、测试和部署深度学习模型的便利,使得开发者和研究者可以更高效地进行深度学习的开发和应用。目前,市场上有许多不同的深度学习框架,如PyTorch、TensorFlow、Keras、MXNet、Caffe2
- mxnet版本与numpy,requests等都不兼容问题
Bian~
numpymxnetpython
简介跟着李沐学AI时遇到的mxnet环境问题。问题使用pipinstallmxnet时会重新安装相匹配的numpy和requests,而这新安装的这两个版本不满足d2l所需的版本。然后报错:ERROR:pip'sdependencyresolverdoesnotcurrentlytakeintoaccountallthepackagesthatareinstalled.Thisbehaviouri
- 初学AI-动手安装mxnet
小白天天向上
mxnet人工智能深度学习
最近看到网络上介绍的《动手学深度学习》,感觉是一本理论结合实际的好书。参考链接如下:《动手学深度学习》—动手学深度学习2.0.0documentation心痒之下开始动手安装,没想到花费自己两天实际搞明白如何安装。以下记录自己的心路历程,哈哈。书上介绍的第一步安装Minicoda,其实也可以安装Anacoda,不影响后面的MXNET安装。书上没有介绍MXNET的运行环境,实际上MXNET只能运行在
- Mxnet导出onnx模型
上单之光
模型部署mxnet人工智能深度学习
Mxnet导出onnx模型requirementsmxnet==1.9.1python3.8+onnxsim导出模型importosimportmxnetasmximportnumpyasnpimportonnxfromonnximportcheckerfrommxnet.onnximportexport_modelfrommxnet.gluon.model_zooimportvisionfrom
- mxnet和numpy版本对应
Edison/
pythonmxnet
关于安装mxnet与numpy版本冲突解决方法下载anaconda32019.7python3.7版本mxnet1.6.0版本numpy1.16.x成功运行
- 安装mxnet详细版
江江酱₍ᐢ..ᐢ₎♡
mxnet人工智能深度学习pythonpipcondaipython
一、mxnet简介MXNet是一个开源的深度学习框架,由亚马逊公司发起并维护。它支持多种编程语言,包括Python、C++、R、Scala等,可以在CPU、GPU和分布式环境下运行。MXNet提供了丰富的神经网络层和优化算法,可以用于各种深度学习任务,如图像分类、目标检测、语音识别等。同时,MXNet还具有高效、灵活、易用等特点,受到了广泛的关注和应用。二、安装过程及遇到的困难步骤一:直接Win+
- 【避免踩坑+报错】Python mxnet包成功安装指南
_普
mxnet人工智能深度学习python经验分享
一.确保已经安装Anaconda二.打开root环境控制台,执行【mxnet】包相关安装指令。1.创建python3.7.0环境condacreate-nnamepython=3.7.0【测试mxnet在python3.7.0x以上版本使用大概率会报错,这里使用低版本python环境】ps:如果在这一步创建环境报错可以考虑卸载【Anaconda】重装2.激活环境condaactivatename三
- [动手学深度学习-PyTorch版]-8.4计算性能-多GPU计算
蒸饺与白茶
8.4多GPU计算注:相对于本章的前面几节,我们实际中更可能遇到本节所讨论的情况:多GPU计算。原书将MXNet的多GPU计算分成了8.4和8.5两节,但我们将关于PyTorch的多GPU计算统一放在本节讨论。需要注意的是,这里我们谈论的是单主机多GPU计算而不是分布式计算。如果对分布式计算感兴趣可以参考PyTorch官方文档。本节中我们将展示如何使用多块GPU计算,例如,使用多块GPU训练同一个
- 模型优化论文笔记6----MobileNets采用深度可分离卷积在权衡精度的同时减小模型尺寸和时延
JaJaJaJaaaa
模型优化卷积神经网络深度学习
《MobileNets:EfficientConvolutionalNeuralNetworksforMobileVisionApplications》论文地址:https://arxiv.org/abs/1704.04861MXNet框架代码:https://github.com/miraclewkf/mobilenet-MXNet1.主要思想介绍了两种简单的全局超参数用以平衡时延和准确率,构建
- 打破硬件壁垒:TVM 助力 AI技术跨平台部署
程序边界
人工智能
文章目录《TVM编译器原理与实践》编辑推荐内容简介作者简介目录前言/序言获取方式随着人工智能(ArtificialIntelligence,AI)在全世界信息产业中的广泛应用,深度学习模型已经成为推动AI技术革命的关键。TensorFlow、PyTorch、MXNet、Caffe等深度学习模型已经在服务器级GPU上取得了显著的成果。然而,大多数现有的系统框架只针对小范围的服务器级GPU进行过优化,
- ART-Adversarial Robustness Toolbox检测AI模型及对抗攻击的工具
Rnan-prince
网络安全人工智能python
一、工具简介AdversarialRobustnessToolbox是IBM研究团队开源的用于检测模型及对抗攻击的工具箱,为开发人员加强AI模型被误导的防御性,让AI系统变得更加安全,ART支持所有流行的机器学习框架(TensorFlow,Keras,PyTorch,MXNet,scikit-learn,XGBoost,LightGBM,CatBoost,GPy等),所有数据类型(图像,表格,音频
- JAVA 程序员的宝藏 AI 工具箱 – Deep Java Library (DJL)
Lannnking
转载自知乎前言这几年深度学习的爆发带来了一个未曾预料到的结果,Python这个曾经小众的语言突然之间变得炙手可热。究其原因,在Python的生态中我们可以容易的找到许多的资源。例如,NumPy用于数据计算、Matplotlib用于数据可视化以及MXNet、PyTorch、TensorFlow等一众深度学习框架。相比之下,尽管Java语言仍是最流行的语言之一,拥有为数众多的开发者,尤其在企业市场拥有
- MxNet源码解析(2) symbol
Junr_0926
1.前言我们在训练之前,先建立好一个图,然后我们可以在这个图上做我们想做的优化,这种形式称为SymbolicPrograms。相对应的是ImperativePrograms,也就是每一句代码都对应着程序的执行,在这种情况下,我们可以写类似于下面的代码:a=2b=a+1d=np.zeros(10)foriinrange(d):d+=np.zeros(10)这在symbolic的方式下是做不到的,因为
- DMLC深度机器学习框架MXNet的编译安装
AI小白龙*
机器学习mxnet人工智能计算机视觉YOLO深度学习tensorflow
这篇文章将介绍MXNet的编译安装。MXNet的编译安装分为两步:首先,从C++源码编译共享库(libmxnet.soforlinux,libmxnet.dylibforosx,libmxnet.dllforwindows)。接着,安装语言包。1.构建共享库依赖目标是构建共享库文件。最小构建需求:最新的支持C++11的C++编译器,比如g++>=4.8,clang一份BLAS库,比如libblas
- AI 训练框架:Pytorch TensorFLow MXNet Caffe ONNX PaddlePaddle
linzhiji
人工智能pytorchtensorflow
https://medium.com/jit-team/bridge-tools-for-machine-learning-frameworks-3eb68d6c6558
- 深度学习之TensorFlow——基本使用
人工智能小豪
neo4jtensorflow人工智能深度学习
一、目前主流的深度学习框架Caffe,TensorFlow,MXNet,Torch,Theano比较库名称开发语言速度灵活性文档适合模型平台上手难易Caffec++/cuda快一般全面CNN所有系统中等TensorFlowc++/cuda/Python中等好中等CNN/RNNLinux,OSX难MXNetc++/cuda快好全面CNN所有系统中等Torchc/lua/cuda快好全面CNN/RNN
- 【AI】模型结构可视化工具Netron应用
TopFancy
人工智能人工智能模型可视化Netron
随着AI模型的发展,模型的结构也变得越来越复杂,理解起来越来越困难,这时候能够画一张结构图就好了,就像我们在开发过程中用到的UML类图,能够直观看出不同层之间的关系,于是Netron就来了。Netron支持神经网络、深度学习和机器学习网络的可视化。支持ONNX,TensorFlowLite,CoreML,Keras,Caffe,Darknet,MXNet,PaddlePaddle,ncnn,MNN
- 深度学习框架 の 动态图 vs 静态图
CW不要无聊的风格
Date:2020/08/03Author:CWForeword:各位炼丹者应该都会有自己常用的一种或几种深度学习框架,如MxNet、Caffe、Tensorflow、Pytorch、PaddlePaddle(百度),甚至是国产新兴框架MegEngine(旷视)、MindSpore(华为)等,在涉及介绍这些框架的时候,都会提及动态图和静态图这样的概念,那么它们究竟是什么意思呢?在框架中又是如何体现
- 深度学习_Softmax简洁实现(Gluon实现)
VictorHong
Softmax多分类简洁实现(Gluon实现)导入必要的包importd2lzhasd2lfrommxnetimportndfrommxnet.gluonimportdataasgdata,lossasgloss,nnfrommxnetimportgluon,init获取和读取数据batch_size=256train_iter,test_iter=d2l.load_data_fashion_mn
- nvidia-docker gpu环境搭建
chaos_chen
dockergpu环境搭建前言搭建GPU的开发环境需要安装nvidia的驱动、cuda、cudnn等,还要安装tensorflow、pytorch、mxnet等框架,并且驱动版本和框架版本需要相统一,如tensorflow1.9的版本需要对用cuda9.0,如果要升级tensorflow,cuda也要做相应的升级。每次在新机器上部署环境都费时费力,因此急需一套docker来快速移植。安装nvidi
- Win10系统下 Tensorrt C++部署yolov5
o氧气o
YOLO人工智能深度学习
1.TensorRt介绍TensorRt是一个有助于在NVIDIA图形处理单元(GPU)上高性能推理c++库。它旨在与TesnsorFlow、Caffe、Pytorch以及MXNet等训练框架以互补的方式进行工作,专门致力于在GPU上快速有效地进行网络推理。一般的深度学习项目,训练时为了加快速度,会使用多GPU并行训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如NVI
- 深度学习工具那么多,究竟哪款最适合你?| 线下沙龙 × 报名
PaperWeekly
又到了炼丹师线下面基时间在之前几期线下沙龙中我们涉及了各类NLP、CV细分领域在现场研讨了大量顶会论文寒冬12月的第一个周末我们想要玩点新花样为大家推荐一些当前最先进的深度学习软件工具毕竟世界上最遥远的距离就是我们用同一个模型却有着不同的软硬件搭配无论你是TFBoy还是MXNeter都不妨这周日来现场和各家核心工程师、开发者专家互撩届时还有各种正版周边小礼物坐等你们抱回家哟~郑达/亚马逊AWS应用
- 线下沙龙 × 报名 | 深度学习工具那么多,究竟哪款最适合你?
PaperWeekly
又到了炼丹师线下面基时间在之前几期线下沙龙中我们涉及了各类NLP、CV细分领域在现场研讨了大量顶会论文寒冬12月的第一个周末我们想要玩点新花样为大家推荐一些当前最先进的深度学习软件工具毕竟世界上最遥远的距离就是我们用同一个模型却有着不同的软硬件搭配无论你是TFBoy还是MXNeter都不妨这周日来现场和各家核心工程师、开发者专家互撩届时还有各种正版周边小礼物坐等你们抱回家哟~郑达/亚马逊AWS应用
- [PyTorch][chapter 7][李宏毅深度学习][深度学习简介]
明朝百晓生
人工智能
前言:深度学习常用的开发平台TensorFlowtorchtheanocaffeDSSTNEmxnetlibdnnCNTK目录:1:深度学习发展历史2:DeepLearning工程简介3:DNN简介一发展历史二DeepLearning工程简介深度学习三大步:定义映射函数(神经网络)定义损失函数通过梯度更新,选择最好的映射函数2.1NeuralNetwork给定了一个函数,可以设置不同的参数,所以对
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$