Python scikit-learn,数据的预处理,缺失值处理,Imputer

缺失值的处理也可以通过pandas实现:https://blog.csdn.net/houyanhua1/article/details/87855228

 

demo.py(scikit-learn,数据的预处理,缺失值处理,Imputer):

from sklearn.preprocessing import Imputer
import numpy as np


# 缺失值处理
im = Imputer(missing_values='NaN', strategy='mean', axis=0)  # 也可以通过pandas来处理缺失值
data = im.fit_transform([[1, 2], [np.nan, 3], [7, 6]])   # np.nan表示缺失值(float类型)。

print(data)
'''
[[1. 2.]
 [4. 3.]
 [7. 6.]]
'''

 

 

你可能感兴趣的:(Python+,机器学习)