- 《深度学习500问》外链笔记
Vincent不是文森特
笔记
1.这个是什么意思2.核函数3.公式理解4.L1和L2正则L1和L2正则化是机器学习中常用的两种正则化技术,它们通过在损失函数中添加一个惩罚项来防止模型过拟合。这两种技术的主要区别在于惩罚项的形式。L1正则化(Lasso正则化)L1正则化通过向损失函数添加权重的绝对值的总和来工作L1正则化的效果之一是它倾向于产生稀疏的权重矩阵,即模型中很多权重会变为0,这有助于特征选择,因为模型会忽略不那么重要的
- 《深度学习 500 问》已更新,GitHub 标星 2.6W
布客飞龙
来源:Datawhale几个月前,红色石头发文介绍过一份在GitHub上非常火爆的项目,名为:DeepLearning-500-questions,中文译名:深度学习500问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了500个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。该热门项目一直在不断更新,作者本着开源精神,不断有新的贡
- 知识储备--基础算法篇-二分搜索
Orange_sparkle
python算法
1.前言最近准备开始刷算法题了,搜了很多相关的帖子,下面三个很不错,计算机视觉秋招准备过程看这个:计算机视觉算法工程师-秋招面经-知乎(zhihu.com)https://zhuanlan.zhihu.com/p/399813916复习深度学习相关知识看深度学习500问:深度学习500问(github.com)https://github.com/scutan90/DeepLearning-500
- 机器学习资料汇总
达微
机器学习资料汇总1.《深度学习500问》川大优秀毕业生在GitHub上创建的项目《深度学习500问》地址:https://github.com/scutan90/DeepLearning-500-questions2.《TensorFlow-Course》针对新手的TensorFlow教程地址:https://github.com/open-source-for-science/TensorFlo
- 机器学习资料汇总
达微
机器学习资料汇总https://github.com/loveunk/machine-learning-deep-learning-noteshttps://github.com/loveunk/Deep-learning-books1.《深度学习500问》川大优秀毕业生在GitHub上创建的项目《深度学习500问》地址:https://github.com/scutan90/DeepLearni
- 强化学习(一):强化学习浅谈
慕阮
深度学习强化学习
最近接触强化学习,发现非常有意思,强化学习多是一种动态规划的思路,使用生活化语言描述,就叫做:实践出真知。相较于有监督和无监督的学习,强化学习更多地是在决策产生结果的反馈基础上进行不断的优化。(在决策结果反馈前,有监督和无监督学习已经固定了决策方案)。强化学习的使用场景(摘自:深度学习500问-强化学习):(1)Manufacturing例如一家日本公司Fanuc,工厂机器人在拿起一个物体时,会捕
- 深度学习(十四):数据增强Data Augmentation
打不死的小黑
深度学习计算机视觉深度学习计算机视觉数据增强图像处理
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问唐宇迪深度学习入门视频课程笔记下载:深度学习个人笔记完整版为什么要使用数据增强数据增强,也称数据扩充,没有大量数据情况下,如何获取更多数据。数据增强是指通过对现有样本的变换来获
- 干货丨深度迁移学习方法的基本思路(文末送书)
风度78
神经网络大数据计算机视觉机器学习人工智能
百度前首席科学家、斯坦福大学副教授吴恩达(AndrewNg)曾经说过:迁移学习将是继监督学习之后的下一个促使机器学习成功商业化的驱动力。本文选自《深度学习500问:AI工程师面试宝典》,将重点介绍目前最热门的深度迁移学习方法的基本思路。▼限时5折,扫码了解详情▼▼随着迁移学习方法的大行其道,越来越多的研究人员开始使用深度神经网络进行迁移学习。与传统的非深度迁移学习方法相比,深度迁移学习直接提升了在
- 周志华《机器学习》书每章思维导图总结
Liao-Zhuolin
笔记机器学习
周志华《机器学习》第一章绪论第二章模型评估与选择第三章线性模型第四章决策树第五章神经网络第六章支持向量机第七章贝叶斯分类器第八章集成学习第九章聚类第十章降维与度量学习第十一章特征选择与稀疏表示第十二章计算学习理论第十三章半监督学习第十四章概率图模型第十五章规则学习第十六章强化学习深度学习500问第一章:数学基础第二章:机器学习基础
- 深度学习(十二):经典CNN
打不死的小黑
深度学习计算机视觉深度学习计算机视觉CNN卷积神经网络经典CNN
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问笔记下载:深度学习个人笔记完整版CNN网络发展CNN受生物自然视觉认知机制启发而来。1959年,Hubel&Wiesel发现,动物视觉皮层细胞负责检测光学信号。受此启发,198
- 深度学习500问
jk英菲尼迪
斯坦福_CS231
项目地址:https://github.com/scutan90/DeepLearning-500-questions第一章数学基础11.1标量、向量、张量之间的联系11.2张量与矩阵的区别?11.3矩阵和向量相乘结果11.4向量和矩阵的范数归纳11.5如何判断一个矩阵为正定?21.6导数偏导计算31.7导数和偏导数有什么区别?31.8特征值分解与特征向量31.9奇异值与特征值有什么关系?41.1
- 【AI书籍】深度学习500问——AI工程师面试宝典,
机器视觉CV
人工智能算法编程语言深度学习机器学习
欢迎大家来到我们《AI书籍》专栏,这一个专栏是面向所有对人工智能技术感兴趣的朋友。在这个专栏里,我们会给大家推荐人工智能相关的优质书籍。今天要推荐的书籍是《深度学习500问——AI工程师面试宝典》作者&编辑|Leong深度学习500问——AI工程师面试宝典这是一本什么样的书本书系统地描述了深度学习的基本理论算法及应用,凝聚了众多一线科研人员及工程师的经验,旨在培养读者发现问题、解决问题、扩展问题的
- 每日一问之为什么创建这个系列
caoqi95
每日一问系列是参照GitHub上daily-question以及深度学习500问这两个Repo或者其他地方的各种问题来测验自己的掌握水平的,顺带着整理一些相关知识点。在此,感谢Repo作者的辛苦整理。不妥则删。同时,建立这个系列也是为了记录自己的缺陷以及每日的进步。且不想再继续懒下去了,要改邪归正,争取做一个理论,代码都很厉害(即使不厉害,起码也要够的上合格)的人。再者,建立这个系列也是今天突然想
- 干货丨深度迁移学习方法的基本思路
博文视点
人工智能深度学习
百度前首席科学家、斯坦福大学副教授吴恩达(AndrewNg)曾经说过:迁移学习将是继监督学习之后的下一个促使机器学习成功商业化的驱动力。本文选自《深度学习500问:AI工程师面试宝典》,将重点介绍目前最热门的深度迁移学习方法的基本思路。限时5折▼随着迁移学习方法的大行其道,越来越多的研究人员开始使用深度神经网络进行迁移学习。与传统的非深度迁移学习方法相比,深度迁移学习直接提升了在不同任务上的学习效
- 5_参考的书、网站、代码、文档与数据集
kk_land
文章目录书文章资源代码数据集书《Python编程从入门到实践》《Python深度学习》《深度学习500问》不让转载,自己上github找哈《模式识别(张学工版)》《高超声速飞行器技术(蔡国飙)》《吴恩达机器学习笔记》文章如何使用学习曲线来诊断你的LSTM模型的行为基于LSTM的轴承故障诊断这篇文章中,LSTM准确率始终无法稳定,结合0221内容找一找确切原因。数据处理的方式是一个样本400个采样点
- 深度学习(十五):目标定位 Object Localization
打不死的小黑
深度学习计算机视觉深度学习计算机视觉
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问笔记下载:深度学习个人笔记完整版图像分类图片分类问题已经并不陌生了,例如,输入一张图片到多层卷积神经网络,它会输出一个特征向量,并反馈给softmax单元来预测图片类型。目标定
- 深度学习500问阅读笔记——Batch_Size
Tiám青年
深度学习500问
这是深度学习500问系列笔记之一,帮助我深入记忆知识,如有不足,随时欢迎交流和探讨。10.Batch_Size1.为什么需要Batch_Size?Batch的选择,首先决定的是下降的方向。如果数据集比较小,可采用全数据集的形式,好处是:(1)由全数据集确定的方向能够更好地代表样本的总体,从而更准确地朝向极值所在的方向。(2)由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。FullBa
- 深度学习500问阅读笔记——理解One Hot Encodeing原理及作用?
Tiám青年
深度学习500问
这是深度学习500问系列笔记之一,帮助我深入记忆知识,如有不足,随时欢迎交流和探讨。11.理解OneHotEncodeing原理及作用?问题由来在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。例如,考虑以下的三个特征:["male","female"]["fromEurope","fromUS","fromAsia"]["useFirefox","usesChrome","usesSa
- 深度学习(十八):人脸验证(face verification)和人脸识别(face recognition)
打不死的小黑
深度学习计算机视觉
这是一系列深度学习的介绍,本文不会涉及公式推导,主要是一些算法思想的随笔记录。适用人群:深度学习初学者,转AI的开发人员。编程语言:Python参考资料:吴恩达老师的深度学习系列视频吴恩达老师深度学习笔记整理深度学习500问笔记下载:深度学习个人笔记完整版人脸验证(faceverification)和人脸识别(facerecognition)人脸验证问题:如果你有一张输入图片,以及某人的ID或者是
- 深度学习概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题
南通SEO
文档手册
深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。全书分为15个章节,近20万字第一章数学基础11.1标量、向量、张量之间的联系11.2张量与矩阵的区别?11.3矩阵和向量相乘结果11.4向量和矩阵的范数归纳11.5如何判断一个矩阵为正定?21.6导数偏导计算31.7导数和偏导数有什么区别?31.8特征值分解与特征向
- 每日一问之为什么创建这个系列
caoqi95
每日一问
每日一问系列是参照GitHub上daily-question以及深度学习500问这两个Repo或者其他地方的各种问题来测验自己的掌握水平的,顺带着整理一些相关知识点。在此,感谢Repo作者的辛苦整理。不妥则删。同时,建立这个系列也是为了记录自己的缺陷以及每日的进步。且不想再继续懒下去了,要改邪归正,争取做一个理论,代码都很厉害(即使不厉害,起码也要够的上合格)的人。再者,建立这个系列也是今天突然想
- 重磅!《深度学习 500 问》已更新,GitHub 标星 2.6W(附完整下载)
红色石头Will
点击上方“AI有道”,选择“星标”公众号重磅干货,第一时间送达几个月前,红色石头发文介绍过一份在GitHub上非常火爆的项目,名为:DeepLearning-500-questions,中文译名:深度学习500问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了500个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。该热门项目一直在不
- (2)机器学习基础(深度学习500问)
knitzj
deeplearningtheory
=======================================================================(1)监督学习:有数据和标签,学习一个模型预测一个输出(决策函数)应用:分类问题,回归问题常见算法:逻辑回归,反向传递神经网络(2)非监督学习:有数据无标签应用:推断数据内部结构,关联规则,聚类常见算法:Apriori算法,k-Means算法(3)半监督学习
- [资源分享] Github上八千Star的深度学习500问教程
spearhead_cai
本文大约600字,阅读大约需要2分钟这周要分享的一个资源是来自Github上的已经有八千多Star的一个深度学习知识总结,如下图所示:其Github地址为:https://github.com/scutan90/DeepLearning-500-questions它目前是有16个章节,包含了数学基础、机器学习、深度学习、CNN、RNN、计算机视觉等,以及最新添加的NLP,即自然语言处理方面的知识总
- 川大优秀毕业生在GitHub上建了一个项目《深度学习500问》,还未完结就获赞无数
zl1zl2zl3
深度学习人工智能AI深度学习人工智能AI
近年来,深度学习在语音、图像、自然语言处理等领域都取得了非常不错的成果,自然而然地成为技术人员争相学习的热点。为了帮助正在学习深度学习的伙伴们,川大的一名优秀毕业生,在GitHub上创建了一个项目:《深度学习500问》,通过问答的形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。全书分为15个章节,近20万字。截至今日,该项目已经获得了21
- 深度学习500问记录-机器学习1
ys1305
500问系列
500问地址常用术语Truepositives(TP):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;Falsepositives(FP):被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;Falsenegatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;Truenegatives(TN):被正确地划分为负例的个数,即
- 深度学习500问
郭明君
技术博客
深度学习500问Referenceshttps://github.com/scutan90/DeepLearning-500-questions01.数学基础02.机器学习基础ROC曲线SVM(supportvectormachine)参考1:https://blog.csdn.net/Love_wanling/article/details/69390047参考2:https://blog.cs
- 深度学习领域的神文(带注释版)
weixin_42774642
机器学习
综合重磅!深度学习500问更新,GitHub2.6W星(附完整下载)-红色石头的文章-知乎https://zhuanlan.zhihu.com/p/71979604神经网络与深度学习(github,国人总结整理的)https://nndl.github.io/这是作者多年以来学习总结的笔记,经整理之后开源于世。写得相当好:http://www.huaxiaozhuan.com/FasterR-CN
- 《深度学习500问》之【数学基础篇】——学习笔记(一)
陆月二三
深度学习深度学习500问
本文参考由哈工大博士生-袁笛、同济大学-乔成磊先生所著的《深度学习500问》而写的学习笔记。学海无涯,笔者不才,望多包涵!一、标量、向量、矩阵、张量标量(scalar)一个标量表示一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组),只有大小,没有方向。我们用斜体表示标量。标量通常被赋予小写的变量名称。向量(vector)一个向量表示一组有序排列的数。通过次序中的索引,我们可
- 川大优秀毕业生在GitHub上建了一个项目《深度学习500问》,还未完结就获赞无数...
爱编程_
来自:开源最前线(ID:OpenSourceTop)综合自:GitHub项目页近年来,深度学习在语音、图像、自然语言处理等领域都取得了非常不错的成果,自然而然地成为技术人员争相学习的热点。为了帮助正在学习深度学习的伙伴们,川大的一名优秀毕业生,在GitHub上创建了一个项目:《深度学习500问》,通过问答的形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》