- GPT-4对话模型在客服中的应用与前景:开启智能客服新时代
Echo_Wish
前沿技术人工智能python人工智能gpt
GPT-4对话模型在客服中的应用与前景:开启智能客服新时代随着人工智能技术的迅猛发展,基于深度学习的对话模型在各个领域中得到了广泛应用。其中,GPT-4对话模型在客服系统中的应用尤为引人注目。本文将探讨GPT-4在客服中的应用与未来发展前景,并结合具体代码示例进行说明。一、GPT-4对话模型概述GPT-4(GenerativePre-trainedTransformer4)是OpenAI开发的一种
- 模型压缩与优化技术——神经架构搜索(Neural Architecture Search, NAS)
DuHz
轻量化模型机器学习计算机视觉人工智能神经网络深度学习数据挖掘语音识别
模型压缩与优化技术中的神经架构搜索(NeuralArchitectureSearch,NAS)技术1.引言在深度学习领域,神经网络的架构设计对模型的性能至关重要。传统的手动设计网络架构的过程费时费力,且通常依赖于经验和直觉。为了提升效率与效果,神经架构搜索(NeuralArchitectureSearch,NAS)作为一种自动化的方法,能够通过算法寻找和优化最佳的神经网络架构。NAS可以在图像识别
- QAT与PTQ模型量化方法的区别
old_power
计算机视觉模型量化深度学习计算机视觉
QAT(QuantizationAwareTraining)和PTQ(PostTrainingQuantization)是两种常见的模型量化方法,用于减少深度学习模型的计算和存储开销,同时尽量保持模型的性能。1.QAT(QuantizationAwareTraining)定义:QAT是在模型训练过程中引入量化操作,使模型在训练时就能感知到量化带来的影响,从而更好地适应量化后的精度损失。流程:在训练
- 毕设分享 深度学习街道行人流量计数系统
fawubio_A
毕业设计python毕设
文章目录0前言1项目运行效果2设计概要2原理介绍2.1目标检测概况什么是目标检测?发展阶段2.2行人检测行人检测简介行人检测技术难点行人检测实现效果4最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要
- Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
小深ai硬件分享
人工智能深度学习服务器
深度学习框架:开启智能大门的钥匙在数字化浪潮中,深度学习如明星照亮众多领域。从智能安防的人脸识别,到医疗图像分析、电商商品推荐、智能语音助手等,其身影无处不在,改变着生活与工作方式。在深度学习领域,Keras、TensorFlow和PyTorch是主流框架,能助开发者构建强大智能模型。但这些框架要充分发挥作用,离不开合适的服务器配置,就像魔法师需要魔法棒和魔力,下面我们就来看看这些具体的框架吧:框
- 深度学习|表示学习|卷积神经网络|局部链接是什么?|06
漂亮_大男孩
表示学习深度学习学习cnn
如是我闻:局部连接(LocalConnectivity),是卷积神经网络(CNN)中的一个关键特性。什么是局部连接(LocalConnectivity)?局部连接指的是:在卷积操作中,每个神经元(或输出单元)只与输入数据的一个局部区域相关联,而不是与整个输入数据相连。换句话说:全连接网络(FullyConnectedLayer)中,每个神经元会与上一层所有的神经元相连。卷积网络(Convoluti
- 深度学习中交叉熵函数的导数:(极简)
洪小帅
深度学习人工智能神经网络python
文章目录前言一.交叉熵函数的导数二.Z,y为有n条数据的矩阵前言另一个博主有更详细的推导https://blog.csdn.net/chaipp0607/article/details/101946040一.交叉熵函数的导数softmax:令一条数据最后的输出为[z1,z2,z3,z4,…,z10],这里令输出层的神经元数量为10pi=ezi∑j=110ezjpi=\frac{e^{z_i}}{\
- 【Python】已完美解决:ERROR: Could not find a version that satisfies the requirement re
屿小夏
python开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 下载马斯克Grok-1模型的实战代码
herosunly
大模型grok-1下载模型实战代码
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了下载马斯克Grok-1模型的实战代码,希望能对学习大模型的同学们有所帮助
- 吴恩达深度学习笔记(七)——机器学习策略
子非鱼icon
深度学习自学笔记深度学习机器学习人工智能神经网络吴恩达
一、正交化通俗的理解就是:要能够诊断出系统性能瓶颈在哪里,以有策略刚好解决这个问题。一个“按钮”只负责解决一件事情。二、单一数字评估指标准确率(precision):在分类器中标记为猫的例子中,有多少是真的猫召回率(recall):对于所有的真猫图片,你的分类器正确识别了多少。但如果有两个评估指标,就很难去选择一个更好的分类器,如下图所示。所以有一个结合这两个指标的标准方法,也即F1分数,定义如下
- 深度学习中的通道(Channel)概念详解
小·恐·龙
大模型深度学习人工智能
1.通道的基本概念通道(Channel)是深度学习中的一个重要概念,它在不同场景下有不同的具体含义。理解通道概念对于理解深度学习模型的结构和工作原理至关重要。2.大语言模型中的通道2.1全连接层的通道概念2.1.1基本结构输入:[batch_size,input_features]权重:[input_features,output_features]输出:[batch_size,output_fe
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- 机器学习笔记 - 机器学习/深度学习实战案例合集
坐望云起
深度学习从入门到精通机器学习深度学习人工智能案例应用神经网络
一、简述如何学习机器学习/深度学习,理论和实践都很重要,理论上的内容需要看课程、读教材。但是实践需要自己动手,实践之后自然会对理论有更深入的理解。怎么实践?借用欧阳修《卖油翁》的话”无他,但手熟尔“。就是多看多写多跑。下面创建这个github的目的是为了存放一些图像处理/计算机视觉/机器学习/深度学习的示例代码集合,不定期会添加新的示例,可供参考。GitHub-bashendixie/ml_too
- Transformer架构原理详解:多头注意力(MultiHead Attention)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,多头注意力,Multi-HeadAttention,机器翻译,自然语言处理,深度学习1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展。传统的循环神经网络(RNN)在处理长序列数据时存在效率低下和梯度消失等问题。为了解决这些问题,谷歌于2017年提出了Transformer架构,并将其应用于机器翻译任务,取得了突破性的成果。Transformer的核心创
- AI 对程序员的冲击剖析
程序员WANG
工具人工智能机器学习语言模型
摘要随着人工智能(AI)技术的飞速发展,其影响力已逐渐渗透到各个行业,程序员群体也面临着前所未有的冲击。本文深入探讨AI对程序员在编程工作模式、技能需求以及职业发展路径等方面带来的冲击,并分析程序员应对这些冲击的策略与方向,旨在为程序员在AI时代的职业发展提供参考。一、引言AI技术近年来取得了突破性进展,其在自然语言处理、机器学习、深度学习等领域的应用日益广泛。在软件开发领域,AI不再仅仅是辅助工
- 在 PyTorch 训练中使用 `tqdm` 显示进度条
weixin_48705841
pytorch人工智能python
在PyTorch训练中使用tqdm显示进度条在深度学习的训练过程中,实时查看训练进度是非常重要的,它可以帮助我们更好地理解训练的效率,并及时调整模型或优化参数。使用tqdm库来为训练过程添加进度条是一个非常有效的方式,本文将介绍如何在PyTorch中结合tqdm来动态显示训练进度。1.安装tqdm库首先,如果你还没有安装tqdm,可以通过pip命令进行安装:pipinstalltqdmtqdm是一
- 【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
weixin_48705841
人工智能
在PyTorch中使用tqdm显示训练进度条,并解决常见错误TypeError:'module'objectisnotcallable在进行深度学习模型训练时,尤其是在处理大规模数据时,实时了解训练过程中的进展是非常重要的。为了实现这一点,我们可以使用tqdm库,它可以非常方便地为你提供进度条显示。1.什么是tqdm?TQDM是一个快速、可扩展的Python进度条库。它可以用来显示迭代的进度,帮助
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 深度学习环境配置指南!(Windows、Mac、Ubuntu全讲解)
Charmve
#AI学习指导:从入门到进阶软件安装环境配置计算机视觉实战文档详细开放源码cudalinuxgpuanacondaubuntu
关注“迈微AI研习社”,内容首发于公众号作者:伍天舟、马曾欧、陈信达入门深度学习,很多人经历了从入门到放弃的心酸历程,且千军万马倒在了入门第一道关卡:环境配置问题。俗话说,环境配不对,学习两行泪。如果你正在面临配置环境的痛苦,不管你是Windows用户、Ubuntu用户还是苹果死忠粉,这篇文章都是为你量身定制的。接下来就依次讲下Windows、Mac和Ubuntu的深度学习环境配置问题。一、Win
- 联邦学习中客户端发送的梯度是vector而不是tensor
wzx_Eleven
联邦学习机器学习网络安全人工智能
在联邦学习中,当本地使用神经网络或深度学习模型时,训练的梯度通常是与模型参数(权重和偏置)相对应的梯度数据。具体来说,梯度的类型和形状取决于模型的结构(例如,卷积神经网络、全连接网络等),以及模型的层数、每层的神经元数量等因素。1.梯度类型:梯度是一个张量:在神经网络中,梯度通常是一个张量(tensor),每一层的梯度张量的形状和该层的权重形状相匹配。具体来说,梯度是损失函数对每个参数的偏导数,表
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- 深度学习-92-大语言模型LLM之基于langchain的模型IO的模型调用
皮皮冰燃
深度学习深度学习语言模型langchain
文章目录1Model的输入输出2langchain支持的模型3调用Ollama模型3.1设置环境变量3.2大语言模型LLM(OllamaLLM)3.2.1生成文本补全3.2.2流式生成文本补全3.3聊天模型(ChatOllama)3.3.1内置的消息类型3.3.2HumanMessage和SystemMessage3.3.3元组方式构成消息列表3.3.4stream流式3.4文本嵌入模型(Olla
- 深度学习基础18(多层感知机代码实现)
NDNPOMDFLR
深度学习深度学习python经验分享人工智能神经网络
多层感知机的从零开始实现现在自己实现一个多层感知机。为了与之前softmax回归获得的结果进行比较,将继续使用Fashion-MNIST图像分类数据集importtorchfromtorchimportnnfromd2limporttorchasd2lbatch_size=256train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 【人工智能】Python常用库-Keras:高阶深度学习 API
IT古董
深度学习人工智能Python人工智能python深度学习
Keras:高阶深度学习APIKeras是一个高效、用户友好的深度学习框架,作为TensorFlow的高级API,支持快速构建和训练深度学习模型。它以模块化、简单和灵活著称,适合研究和生产环境。Keras的发音为[ˈkerəs],类似于“凯拉斯”或“克拉斯”。这个名字来源于希腊语κέρας(kéras),意思是“角”或“角质物”。这个词与深度学习的灵感来源——大脑的神经网络结构有一定联系。Kera
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST