矩阵从左上到右下的最短距离问题

1、问题:只允许向下或者向右,求从左上到右下的最短距离,动态规划法

1 6 3 1 1 1
6 0 2 5 1 1
3 2 0 3 4 1
1 5 3 0 2 3
6 7 4 7 5 2
2 6 1 3 4 9

 

 

 

 

 

 

 1 public int minPathSum(int[][] grid) {
 2     if(grid==null || grid.length==0) return 0;
 3     int m = grid.length;
 4     int n = grid[0].length;
 5     int[][] p = new int[m][n];
 6     for (int i = 0; i < m; i++) {
 7         for (int j = 0; j < n; j++) {
 8             if (i == 0 && j == 0)
 9                 p[i][j] = grid[i][j];
10             else if (i == 0 && j > 0)
11                 p[i][j] = p[i][j-1] + grid[i][j];
12             else if (i > 0 && j == 0)
13                 p[i][j] = p[i-1][j] + grid[i][j];
14             else
15                 p[i][j] = Math.min(p[i-1][j], p[i][j-1]) + grid[i][j];
16         }
17     }
18     return p[m-1][n-1];
19 }

 

2、问题:允许上下左右走,求从左上到右下的最短距离

1 6 3 1 1 1
6 0 2 5 1 1
3 2 0 3 4 1
1 5 3 0 2 3
6 7 4 7 5 2
2 6 1 3 4 9

 

 

 

 

 

 

每个方格看成是一个点,可以构造N*M+2(源点和目标点)个点的图,然后用最短路径算法求解

法1:下面是dijkstra算法

 1 public void dijkstra(int[][] graph, int source){
 2     int n = graph.length;
 3     int[] dis = new int[n];
 4     boolean[] set = new boolean[n];
 5     // 初始化
 6     for(int i=0; i){
 7         // -1表示不可达
 8         dis[i] = graph[source][i];
 9     }
10     dis[source] = 0;
11     set[source] = true;
12 
13     for(int i=0; i){
14         // 找到V中距离源点最近的点
15         int mindis = Integer.MAX_VALUE;
16         int minIndex=0;
17         for(int v=0; v){
18             if(!set[v] && dis[v]<mindis && dis[v]!=-1){
19                 mindis = dis[v];
20                 minIndex = v;
21             }
22         }
23 
24         // 更新源点到V中每个点的距离
25         set[minIndex] = true;
26         for(int v=0; v){
27             if(!set[v] && graph[minIndex][v]>0 && dis[v] > dis[minIndex]+graph[minIndex][v]){
28                 dis[v] = dis[minIndex]+graph[minIndex][v];
29             }
30         }
31     }
32 }

法2:用优先队列方法,广度优先搜索

优先队列存点v和源点到v的最短路径。

代码

  1 package hihocoder;
  2 
  3 import java.util.*;
  4 
  5 public class WaterCity2{
  6 
  7     private PriorityQueue queue = new PriorityQueue<>();
  8     private Set visited = new HashSet<>();
  9     private int n, m;
 10     private int[] distN, distM;
 11     private Point[][] street;
 12 
 13     private class Point implements Comparable{
 14         int r;
 15         int c;
 16         int dis;
 17         boolean blocked = false;
 18         boolean visited = false;
 19 
 20         private Point(int r, int c) {
 21             this.r = r;
 22             this.c = c;
 23         }
 24 
 25         private void visitNeighbors(){
 26             if(r!=0)    update(street[r-1][c], distN[r-1]);
 27             if(r!=n-1)  update(street[r+1][c], distN[r]);
 28             if(c!=0)    update(street[r][c-1], distM[c-1]);
 29             if(c!=m-1)  update(street[r][c+1], distM[c]);
 30         }
 31 
 32         private void update(Point p, int len){
 33             if(!p.blocked && !p.visited && p.dis > dis + len){
 34                 queue.remove(p);
 35                 p.dis = dis + len;
 36                 queue.add(p);
 37             }
 38         }
 39 
 40         @Override
 41         public int compareTo(Point p){
 42             return dis-p.dis;
 43         }
 44     }
 45 
 46     private int minPath(int r0, int c0, int r1, int c1){
 47         Point start = street[r0][c0];
 48         Point end = street[r1][c1];
 49         queue.clear();
 50         visited.clear();
 51         for (int i = 0; i < n; i++) {
 52             for (int j = 0; j < m; j++) {
 53                 street[i][j].visited = false;
 54                 street[i][j].dis = Integer.MAX_VALUE;
 55             }
 56         }
 57 
 58         start.dis = 0;
 59         queue.add(start);
 60         while(!queue.isEmpty()){
 61             Point cur = queue.poll();
 62             if(cur == end) return cur.dis;
 63             cur.visited = true;
 64             cur.visitNeighbors();
 65         }
 66         return -1;
 67     }
 68 
 69     public void deal() {
 70         try(Scanner scanner = new Scanner(System.in)) {
 71             while (scanner.hasNextInt()) {
 72                 n = scanner.nextInt();
 73                 m = scanner.nextInt();
 74                 distN = new int[n-1];
 75                 distM = new int[m-1];
 76                 for (int i = 0; i < n - 1; i++) {
 77                     distN[i] = scanner.nextInt();
 78                 }
 79                 for (int i = 0; i < m - 1; i++) {
 80                     distM[i] = scanner.nextInt();
 81                 }
 82 
 83                 street = new Point[n][m];
 84                 for (int i = 0; i < n; i++) {
 85                     for (int j = 0; j < m; j++) {
 86                         street[i][j] = new Point(i, j);
 87                     }
 88                 }
 89 
 90                 int k = scanner.nextInt();
 91                 for (int i = 0; i < k; i++) {
 92                     street[scanner.nextInt()-1][scanner.nextInt() - 1].blocked = true;
 93                 }
 94 
 95                 int q = scanner.nextInt();
 96                 for (int i = 0; i < q; i++) {
 97                     System.out.println(minPath(scanner.nextInt()-1, scanner.nextInt()-1,
 98                             scanner.nextInt()-1, scanner.nextInt()-1));
 99                 }
100             }
101         }
102     }
103 
104     public static void main(String[] args){
105         new WaterCity2().deal();
106     }
107 }

 

转载于:https://www.cnblogs.com/shizhh/p/5728558.html

你可能感兴趣的:(矩阵从左上到右下的最短距离问题)