- OpenCV边缘填充方式详解
慕婉0307
opencv基础opencv计算机视觉人工智能
一、边缘填充概述在图像处理中,边缘填充(BorderPadding)是一项基础而重要的技术,特别是在进行卷积操作(如滤波、边缘检测等)时,处理图像边缘像素需要用到周围的像素值。由于图像边缘的像素没有完整的邻域,因此需要通过某种方式对图像边界进行扩展。边缘填充的主要应用场景包括:图像滤波(如高斯滤波、中值滤波等)卷积神经网络(CNN)中的卷积层形态学操作(如膨胀、腐蚀)图像特征提取二、OpenCV中
- 感知框2D反投是咋回事?
SLAM必须dunk
自动驾驶人工智能深度学习机器学习自动驾驶机器人
一、感知框:“2D框反投”是咋回事?(以自动驾驶识别车辆为例)1.核心逻辑:从图像特征“反推”目标框简单说,先用算法在2D图像里识别特征(比如车辆的轮廓、颜色、纹理),再把这些特征对应的区域,用“反投影”思路框成2D矩形。目的是在单张摄像头画面里,标记出“疑似目标”的位置。2.类比理解(找停车场里的红色轿车)假设你开发一个“自动驾驶视觉感知模块”,要识别停车场里的红色轿车第一步(特征提取):算法学
- 深入研究YOLO算法改进中的注意力机制
周立-ric
本文还有配套的精品资源,点击获取简介:YOLO算法因其高效和准确而在实时目标检测领域备受青睐。注意力机制的引入对YOLO算法的性能提升起到了关键作用,尤其是通过关注图像关键区域来提高检测精度。注意力机制可以细分为通道注意力、空间注意力、自注意力、多尺度注意力和位置感知注意力等类型,每种类型的注意力机制都旨在优化模型对图像特征的理解和处理。本文档提供了一个包含实现这些注意力机制的代码的压缩包,并介绍
- 怎么对词编码进行可视化:Embedding Projector
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonembedding
怎么对词编码进行可视化:EmbeddingProjectorhttps://projector.tensorflow.org/EmbeddingProjector是用于可视化高维向量嵌入(如词向量、图像特征向量等)的工具,能帮你理解向量间的关系,下面以词向量分析和**简单自定义数据(比如特征向量)**为例,教你怎么用:一、词向量分析场景(以图中Word2Vec数据为例)1.加载数据与基础查看图里已
- 基于Python+OpenCV实现SIFT
2301_79809972
pythonpythonplotly
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景与意义SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)是一种在计算机视觉中广泛应用的局部图像特征描述子。由于其具有尺度不变性、旋转不变性和对光照变化、仿射变换和噪声的鲁棒性,SIFT在图像匹配、物体识别、三维重建等领域
- 头歌之动手学人工智能-图像卷积特征提取
第1关:图像卷积特征提取任务描述本关任务:编写一个能使用卷积滤波提取图像特征的小程序。相关知识为了完成本关任务,你需要掌握:1.基本概念,2.如何使用卷积滤波提取图像特征。编程要求根据提示,在右侧编辑器补充代码,完成两个函数,计算并输出函数所返回特征数组的和。测试说明平台会对你编写的代码进行测试:测试输入:一张RGB图;预期输出:提取出特征数组的和。#-*-coding:utf-8-*-#导入相关
- 基于KAN+Transformer的专业领域建模方法论
乡土老农
transformer深度学习人工智能
一、专业领域KAN方法创新路径领域函数分解策略•数学建模:针对专业领域特性设计专用基函数组合•医学影像:采用小波变换基函数分解图像特征```pythonclassWaveletKAN(nn.Module):def__init__(self):self.wavelet_basis=nn.Parameter(torch.randn(8,32,3))#8通道小波基defforward(self,x):r
- SIFT 全面解析:原理、实现与应用
Hello.Reader
算法其他算法
1.引言1.1什么是SIFT?SIFT,全称为Scale-InvariantFeatureTransform(尺度不变特征变换),是一种用于图像特征检测和描述的经典算法。它通过提取图像中的局部关键点,并为每个关键点生成具有尺度和旋转不变性的描述子,使其能够在不同的图像中进行特征匹配。SIFT算法尤其适合处理视角变化、尺度变换、部分遮挡和光照变化的问题,因此被广泛应用于计算机视觉领域。1.2SIFT
- Python爬虫与图像识别:搜索引擎的多模态搜索
搜索引擎技术
搜索引擎实战python爬虫搜索引擎ai
Python爬虫与图像识别:搜索引擎的多模态搜索关键词:Python爬虫、图像识别、多模态搜索、搜索引擎、计算机视觉、深度学习、数据采集摘要:本文深入探讨了如何结合Python爬虫技术与图像识别算法构建多模态搜索引擎。我们将从基础概念出发,详细讲解爬虫系统设计、图像特征提取、多模态索引构建等核心技术,并通过实际案例展示如何实现一个能够同时处理文本和图像查询的搜索引擎系统。文章还将分析当前技术挑战和
- 【MATLAB源码】机器视觉与图像识别技术(4)---模式识别与视觉计数
§ꦿCFོ༉
机器视觉与图像识别技术计算机视觉算法人工智能图像处理matlab深度学习
系列文章目录第一篇文章:【MATLAB源码】机器视觉与图像识别技术—视觉系统的构成(视频与图像格式转换代码及软件下载)第二篇文章:【MATLAB源码】机器视觉与图像识别技术(2)—图像分割基础第三篇文章:【MATLAB源码】机器视觉与图像识别技术(2)续—图像分割算法第四篇文章:【MATLAB源码】机器视觉与图像识别技术(3)—数字形态学处理以及图像特征点提取模式识别与视觉计数
- 计算机视觉与深度学习 | 基于MATLAB的图像特征提取与匹配算法总结
单北斗SLAMer
程序语言设计(C语言C++MatlabPython等)图像处理matlab计算机视觉人工智能
基于MATLAB的图像特征提取与匹配算法全面指南图像特征提取与匹配基于MATLAB的图像特征提取与匹配算法全面指南一、图像特征提取基础特征类型分类二、点特征提取算法1.Harris角点检测2.SIFT(尺度不变特征变换)3.SURF(加速鲁棒特征)4.FAST角点检测5.ORB(OrientedFASTandRotatedBRIEF)三、区域特征提取算法1.MSER(最大稳定极值区域)2.Blob
- Python构建人脸识别系统实战项目
爱你不会累
本文还有配套的精品资源,点击获取简介:本项目详细阐述了如何使用Python语言和face_recognition库实现人脸识别系统。人脸识别技术基于比较人脸图像特征,用于身份验证和识别。该系统利用face_recognition库及其依赖的dlib和OpenCV进行人脸检测和识别,包括人脸检测、特征提取、数据库创建、人脸识别和系统优化等步骤。项目还可能包含示例代码、数据集、配置文件和文档,旨在向开
- 【视觉SLAM基础(二):特征点提取与匹配】
Unpredictable222
SLAM算法算法自动驾驶ubuntuc++笔记opencv
前言在视觉SLAM中,特征点是连接连续图像帧的桥梁,是视觉里程计的核心。本文将详细介绍特征点的提取与匹配方法,以及如何利用这些特征点估计相机运动。原理部分只是简单介绍,详细的介绍大家可以去看高翔老师的《视觉SLAM十四讲》。1.特征点提取1.1特征点基本概念一个好的图像特征应该具有:可重复性:在不同图像中能被重复检测到可区分性:不同特征有显著区别高效性:计算复杂度低局部性:对遮挡、光照变化等鲁棒1
- OpenCV 第7课 图像处理之平滑(一)
嵌入式老牛
树莓派之OpenCVopencv图像处理计算机视觉
1.图像噪声在采集、处理和传输过程中,数字图像可能会受到不同噪声的干扰,从而导致图像质量降低、图像变得模糊、图像特征被淹没,而图像平滑处理就是通过除去噪声来达到图像增强的目的。常见的图像噪声有椒盐噪声、高斯噪声等。1.1椒盐噪声椒盐噪声(Salt-and-pepperNoise)也称为脉冲噪声,是一种随机出现的白点或黑点,具体表现为亮的区域有黑色像素,或是暗的区域有白色像素,又或是两者皆有。下面左
- OpenCV CUDA模块图像特征检测与描述------图像中快速检测特征点类cv::cuda::FastFeatureDetector
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::cuda::FastFeatureDetector是OpenCV的CUDA加速模块中的一部分,用于在图像中快速检测特征点。FAST(FeaturesfromAcceleratedSegmentTest)算法是一种高效的角点检测算法,能够在保持较高精度的同时
- 【大模型面试每日一题】Day 23:如何设计一个支持多模态(文本+图像)的大模型架构?
是麟渊
LLMInterviewDaily面试每日一题面试架构职场和发展人工智能自然语言处理
【大模型面试每日一题】Day23:如何设计一个支持多模态(文本+图像)的大模型架构?题目重现面试官:我们需要构建一个同时处理文本和图像的多模态大模型,用于图文检索、视觉问答等任务。请设计该模型的核心架构,说明关键模块及其交互方式,并分析可能面临的技术挑战及解决方案。输入文本modality图像modality文本编码器图像编码器文本特征图像特征多模态融合模块任务输出/解码器生成文本/图像/决策..
- 机器学习第二十三讲:CNN → 用放大镜局部观察图片特征层层传递
kovlistudio
机器学习人工智能技术机器学习cnn人工智能
机器学习第二十三讲:CNN→用放大镜局部观察图片特征层层传递资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南CNN详解:图像理解的多层放大镜[^9-2]卷积神经网络(CNN)就像给计算机装备了显微镜+望远镜的组合套装,通过逐层放大观察图像特征。以"识别橘猫图片"为例:识别边缘轮廓捕捉
- 机器学习第二十三讲:CNN → 用放大镜局部观察图片特征层层传递
机器学习第二十三讲:CNN→用放大镜局部观察图片特征层层传递资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南CNN详解:图像理解的多层放大镜1卷积神经网络(CNN)就像给计算机装备了显微镜+望远镜的组合套装,通过逐层放大观察图像特征。以"识别橘猫图片"为例:graphTDA[输入图片
- H.264/AVC 变换量化编码核心技术拆解
码流怪侠
h.264AVC视频编解码变换编码量化编码DCTx264
变换编码视频压缩为什么需要变换:图像和视频信号在空间域中存在大量冗余。例如,平坦区域(如蓝天)或缓慢变化的区域(如草地)占据了大部分像素信息,这些区域在空间域中的像素值高度相关,绝大部分图像特征是平坦和变化缓慢区域占大部分,细节和内容突变占小部分,即图像中直流和低频占大部分,高频只占小部分,这样从空间域到频率域或变换域只会产生相关系数很小的变换系数。人眼对高频细节(如细微纹理或噪声)不敏感,但对低
- Pytorch之保存和加载预训练的模型
BlackMan_阿伟
Pytorchpython深度学习机器学习人工智能
在深度学习中会用到迁移学习的方法,也就是我们把在其它数据集上训练比较好的model拿到我们的模型上来进行finetune,这样避免了我们重新去花费时间去训练模型,比如vgg16提取图像特征的这个模型,大大节省了我们训练的时间。这个过程我们就涉及到加载预训练的模型,有的时候我们需要加载整个模型,有时候我们需要模型的一个部分,因此在本文中将会对在Pytroch这个框架中如何加载预训练的模型做以阐述。说
- 快速读文章-Adversarial Training Towards Robust Multimedia Recommender System
无意识积累中
推荐系统深度学习计算机视觉人工智能
摘要:随着网络上多媒体内容的普及,迫切需要开发能够有效利用多媒体数据中丰富信号的推荐解决方案。由于深度神经网络在表征学习中的成功,多媒体推荐的最新进展主要集中在探索深度学习方法以提高推荐精度上。然而,迄今为止,很少有人研究多媒体表示的健壮性及其对多媒体推荐性能的影响。本文对多媒体推荐系统的鲁棒性进行了研究。通过使用最先进的推荐框架和深度图像特征,我们证明了整个系统的鲁棒性不强,因此,对输入图像进行
- 目标检测的图像特征提取
勇往直前的流浪刀客
CV图像特征提取
目标检测的图像特征提取之(一)HOG特征1、HOG特征:方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究
- 通道和空间的双重作用的CBAM注意力机制
浩瀚之水_csdn
深度学习目标检测#Pytorch框架深度学习人工智能
论文地址:CBAM:ConvolutionalBlockAttentionModule点击即可跳转实现代码:CBAM代码实现点击即可跳转CBAM(ConvolutionalBlockAttentionModule)注意力机制是一种结合了通道注意力和空间注意力的机制,旨在提升卷积神经网络(CNN)对图像特征的敏感度和表达能力。以下是对通道和空间双重作用的CBAM注意力机制的详细解析:一、通道注意力模
- 相机-IMU联合标定:相机-IMU外参标定
吃水果不削皮
视觉组合导航ROSVIO
文章目录简介标定工具kalibr标定数据录制相机-IMU外参标定简介在VINS(视觉惯性导航系统)中,相机-IMU外参标定是确保多传感器数据时空统一的核心环节,其作用可概括为以下关键点:坐标系对齐(空间同步),外参误差会导致视觉特征点投影与IMU预积分轨迹不匹配,引发位姿跳变(如图像特征与IMU预测的轨迹"错位")。时间同步(时间戳对齐),未校正时,高速运动下视觉与IMU数据不同步,融合结果会出现
- 卷积神经网络:池化层
00&00
深度学习人工智能cnn人工智能神经网络
池化层是卷积神经网络(CNN)中的一个重要组成部分,主要用于减少特征图的空间尺寸,从而降低计算复杂度和防止过拟合。池化层通过下采样操作来获取图像特征的显著性,同时保持重要的特征信息。一、常见池化操作1.最大池化(MaxPooling)在每个池化窗口内,取最高值作为输出。通常可用于保留显著特征,特别是边缘和角点。示例:输入特征图:1324562112020123池化窗口(2x2)和步幅(2)下的最大
- MATLAB算法实战应用案例精讲-【图像处理】图像特征提取(附MATLAB代码实现)
林聪木
图像处理计算机视觉人工智能
目录前言知识储备提取图像文本的Python库1.pytesseract2.EasyOCR3.Keras-OCR4.TrOCR5.docTR算法原理图像的特征图像特征的分类遥感图像分类特征提取(Featureextraction)灰度共生矩阵GLCM兴趣点提取BRIEF算法Harris角点算法Harris和Shi-Tomas算法SIFT/SURF算法SIFT原理SURF原理LBP和HOG特征算子LB
- 五. 以聚类和搜图方式清洗图像数据集,采用Pickle和Faiss(百万数据集,ms级响应)快速搜图(附完整代码)
BB_CC_DD
高效清洗数据集深度学习faiss聚类
文章内容结构:一.总结Faiss和Pickle优缺点和适用场景。二.将图像特征打包成pickle文件(Python的序列化格式),匹配搜图(附完整代码)。三.将图像特征打包成faiss的index索引文件,匹配搜图(附完整代码)。四.先用Pickle保存图像特征,再用Faiss构建索引(更灵活)(附示例代码)。(注:这里全部是个人经验,能提升样本标注和清洗效率,不是标准的数据处理方式,希望对您有帮
- 深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器
程序员非鱼
深度学习基础知识深度学习人工智能pytorchPixelShufflepython
在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。PixelShuffle和PixelUnshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。为什么需要PixelShuffle和PixelUnshufflePixe
- Sparse4D: Multi-view 3D Object Detection with Sparse Spatial-Temporal Fusion论文解析
butterfly won't love flowers
稀疏检测任务目标检测人工智能计算机视觉
一、背景对于基于多视角图像的3D目标检测,现有的工作有两个方向,分别是稀疏检测与基于BEV的检测方法。其中BEV方法是将多视图的图像特征转到BEV空间上执行下游任务,但是它的缺点是BEV特征图的构建需要从各个视角特征图进行稠密的采样工作,BEV构建复杂且资源需求高;并且感知范围受BEV特征图尺度的限制,因此需要在感知范围、效率与准确度间权;此外就是BEV特征图将高度维度压缩,导致其对于一些在高度层
- BEVDepth: Acquisition of Reliable Depth for Multi-View 3D Object Detection
butterfly won't love flowers
BEV3d目标检测php
背景基于多视角图片的3D感知被LSS证明是可行的,它使用估计的深度将图像特征转化为3D视椎,再将其压缩到BEV平面上。对于这个得到的BEV特征图,它支持端到端训练以及各种下游任务。但是对于深度估计这一块学习的深度质量如何,到目前为止没有相关工作研究。贡献本文的贡献如下:提出了使用点云深度信息显示监督深度预测,提高了深度预测质量将相机参数加入网络中,能够实现camera-aware功能。提出了深度优
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,