This function completes the subsetting, transforming and ordering triad with a function that works in a similar way to subset
and transform
but for reordering a data frame by its columns. This saves a lot of typing!
这个函数完成构造子集,转换()将和排序三合会与一个函数以类似的方式工作的子集,但是对于重新排序一个数据框的列,这可以节省大量输入!
使用方法
1.简单排序
传统排序方式
mtcars[with(mtcars, order(cyl, disp)), ]
mpg cyl disp hp drat wt qsec vs am gear carb
.......
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
.......
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
返回按cyl以升序然后对disp升序排序的数据框
dplyr::arrange(mtcars, cyl, disp)
mpg cyl disp hp drat wt qsec vs am gear carb
.......
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
.......
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
返回结果同上
不返回行号所以如要行号的话需要把行号加到数据框中
myCars = cbind(vehicle=row.names(mtcars), mtcars)dplyr::arrange(myCars, cyl, disp)
第二种
降序返回
dplyr::arrange(myCars, cyl, desc(disp))
vehicle mpg cyl disp hp drat wt qsec vs am gear carb
1 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
3 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
4 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
5 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
6 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
7 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
8 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
9 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
10 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
11 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
12 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
13 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
14 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
15 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
16 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
17 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
18 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
19 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
20 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
21 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4