- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- OpenCV3最常用的基本操作
HeoLis
OpenCV介绍OpenCV的全称是OpenSourceComputerVisionLibrary,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。以上是维基百科关于OpenCV的介绍,简单来说它就是处理图
- EI检索-机器视觉、图像处理与影像技术国际学术会议(MVIPIT 2023)邀您参会!
诗远Yolanda
图像处理人工智能计算机视觉
机器视觉是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。而图像处理等技术的快速发展也推动了机器视觉的发展。机器视觉在我国具有广泛的工业应用,核心功能包括:测量,检测,识别,定位等。第一届机器视觉、图像处理与影像技术国际学术会议(MVIPIT2023)将于2023年7月26日-28日在浙江杭
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 图形几何算法 -- 凸包算法
CAD三维软件二次开发
算法学习算法c#3d几何学
前言常用凸包算法包括GrahamScan算法和JarvisMarch(GiftWrapping)算法,在这里要简单介绍的是GrahamScan算法。1、概念凸包是一个点集所包围的最小的凸多边形。可以想象用一根绳子围绕着一群钉子,绳子所形成的轮廓便是这些钉子的凸包。在计算几何中,凸包得到了广泛的应用,涉及领域包括模式识别、图像处理和优化问题等。2、算法原理凸包算法的目标是从给定的点集(在二维平面中)
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 机器学习算法深度总结(5)-逻辑回归
婉妃
1.模型定义逻辑回归属于基于概率分类的学习法.基于概率的模式识别是指对模式x所对应的类别y的后验概率禁行学习.其所属类别为后验概率最大时的类别:预测类别的后验概率,可理解为模式x所属类别y的可信度.逻辑回归(logistic),使用线性对数函数对分类后验概率进行模型化:上式,分母是满足概率总和为1的约束条件的正则化项,参数向量维数为:考虑二分类问题:使用上述关系式,logistic模型的参数个数从
- 计算机视觉概念科普
极客代码
玩转AI人工智能图像处理计算机视觉深度学习
计算机视觉(ComputerVision,CV)是一门多学科交叉的科学,旨在让计算机具备“看”的能力,即通过图像或视频数据来理解世界。它结合了信号处理、图像处理、模式识别、机器学习等多个领域的技术,让计算机能够执行诸如识别、分类、追踪等复杂的视觉任务。本文将深入探讨计算机视觉的核心概念和技术。一、计算机视觉概述计算机视觉是一门研究如何让计算机“看”世界并从中获取信息的科学。它主要关注如何处理、分析
- 机器学习(ML)算法分类
活蹦乱跳酸菜鱼
机器学习
机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:一、监督学习算法监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。逻辑回归:虽然名称中包含“回归”,但实际上是用于分类问题,特别是二分类问题。通过将线性回归模
- 让数据说话:人工智能与六西格玛的完美结合
张驰课堂
人工智能六西格玛
当人工智能与六西格玛结合,企业可以充分利用人工智能技术的数据处理、预测分析和智能决策支持能力,实现数据驱动的决策、质量控制和流程优化,从而提高企业的效率和竞争力。下面张驰咨询给大家具体的介绍:1、数据驱动决策六西格玛侧重于数据分析和决策制定,而人工智能可以提供更强大的数据处理和分析能力。通过人工智能技术,可以自动收集和整理大量的数据,并进行有效的数据挖掘和模式识别。这些数据分析结果可以为六西格玛项
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- RBF神经网络中的RBF的英文全称是什么,是用来干什么的?
神笔馬良
神经网络人工智能深度学习
问题描述:RBF神经网络中的RBF的英文全称是什么,是用来干什么的?问题解答:RBF神经网络中的RBF是径向基函数(RadialBasisFunction)的缩写。径向基函数是一种在机器学习和模式识别中常用的函数类型,它们通常用于构建非线性模型。在RBF神经网络中,径向基函数被用作隐藏层的激活函数,用来将输入数据从输入空间映射到一个高维的特征空间,从而实现非线性的数据拟合和模式识别。具体来说,径向
- 用脑想问题还是用心驱动脑?
风口猪炒股指标
抢财猫股票课堂我的思想大火拼脑心关系
昨天回答了几个朋友的问题,我发现提问题的人很少,这让我想起之前讲的小妞子的故事,我问了她好几个月的同一句话:你有问题吗?结果她很反感,嘿嘿。其实吧,我讲的很多东西都是实的,反而我们感知不到的日常以为真的东西其实是不真实的。比如说眼见为实,真正是眼睛看到的是你认识的真实的吗?不是,因为你脑子里有模式识别了才被识别出来,如果脑子里没有模式就无法识别,即便眼睛看到了也会忽略掉。那追问下去,如果脑子无法识
- 【专题】2023年中国手术机器人行业专题报告PDF合集分享(附原数据表)
原文链接:https://tecdat.cn/?p=34144仿生机器人作为一类结合了仿生学原理的机器人,具备自主决策和规划行动的能力,正逐渐进入大众视野。它们的核心技术要素包括感知与认知技术、运动与控制技术、人机交互技术和自主决策技术。阅读原文,获取专题报告合集全文,解锁文末68份仿生机器人相关行业研究报告。感知与认知技术涵盖了各种传感器的应用、模式识别和情感理解等高级认知能力,而运动与控制技术
- 计算机视觉主要知识点
superdont
计算机视觉人工智能
计算机视觉是指利用计算机和算法来解析和理解图片和视频中的内容。这是一个跨学科领域,融合了计算机科学、图像处理、机器学习和模式识别等多方面的技术。以下是一些计算机视觉入门的基本知识点:图像基础:像素:图片的最基本组成单元,包含了颜色信息。色彩空间:如RGB(红、绿、蓝)、HSV(色调、饱和度、明度)等,不同色彩空间代表图像色彩的方式不同。图像类型:位图(Bitmap)与矢量图(Vector),位图由
- 探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战
繁依Fanyi
dnn人工智能神经网络深度学习机器学习gitwindows
开篇部分:人工智能、深度神经网络与内存计算的交汇在当今数字化时代,人工智能(AI)已经成为科技领域的一股强大力量,而深度神经网络(DNN)则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作方式的计算模型,通过层层堆叠的神经元网络来实现复杂的模式识别和数据处理任务。从图像识别、语音识别到自然语言处理,DNN已经在各个领域展现了惊人的能力。然而,随着DNN模型的不断演进和复杂化,对计算资源的需求
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 「论文搬运」王亦洲课题组 CVPR 2021 入选论文解读:时间序列疾病预测的因果隐马尔可夫模型
Sternstunden
论文计算机视觉人工智能深度学习cvpr
本文是对发表于计算机视觉和模式识别领域的顶级会议CVPR2021的论文“CausalHiddenMarkovModelforTimeSeriesDiseaseForecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于VAE的变分框架进行学习。通过对图
- 探秘深度学习的巅峰之作:ResNet101与其在图像识别领域的革命性应用
程序员Chino的日记
深度学习人工智能
引言深度学习和图像识别的世界已经被深度卷积神经网络的引入所革命化,而在这些网络中,ResNet101架构作为一个重要的里程碑脱颖而出。本文旨在详细探讨ResNet101架构、其设计、功能和应用。ResNet革命2015年在计算机视觉和模式识别会议(CVPR)上介绍的ResNet(残差网络)家族,标志着深度学习图像识别的一个转折点。这些网络引入了残差学习的概念,解决了深度神经网络中的梯度消失问题,使
- LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?
电力系统爱好者
lstm人工智能rnn
LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?时间序列分析是处理时间相关数据的一种方法,常用于预测、趋势分析和模式识别等应用。下面是一些常见的时间序列分析方法和相应的MATLAB代码示例:移动平均法:%计算简单移动平均data=[1,2,3,4,5,6];windowSize=3;movingAverage=movmean(data,windowSize);自回归模型(
- 机器学习简要概述
@Duang~
机器学习机器学习人工智能算法
一、基本概念及应用传统机器学习算法首先需要对数据进行特征提取,采用分类器(如决策树、人工神经网络、贝叶斯、集成学习、支持向量机等)进行分类。机器学习:特征提取+分类器分类特征提取难,制约发展。深度学习出现,一定程度解决了特征提取的难题,机器学习繁荣起来。机器学习+数据库=数据挖掘+工业应用=模式识别+图像处理=机器视觉+语音处理=语音识别+文本处理=自然语言处理二、数据集及模型数据集的划分:方法:
- 大脑的工作原理
珊珊_带你重返年轻
今天继续阅读《微习惯》第二章,大脑的工作原理。今天这一章有点烧脑。大脑分成两个部分-潜意识部分和意识部分。重复就是(潜意识)大脑使用的语言。建立习惯的目标是用重复来改变大脑。事实上改变习惯的两个关键点是重复和回报,如果有回报,大脑更愿意重复做一件事。我们的行为中有45%是自动完成的,无须思考的。大脑是由执行决策和进行自动行为模式识别的两部分组成的系统。前额皮层的管理功能相当活跃,反应灵敏,但同时也
- 计算机视觉比较有名的期刊和会议
anycedo
中文SCI级:《物理学报》《红外与毫米波学报》etc.(IF比较低,也不是特别专门针对计算机视觉)EI级:《自动化学报》《光学精密工程》《电子学报》《软件学报》《计算机研究与发展》《计算机学报》《计算机辅助设计与图形学学报》《系统工程与电子技术》、一些大学的学报,etc.(质量参差不齐)中文核心《中国图象图形学报》《模式识别与人工智能》《机器人》《图学学报》《电光与控制》etc.国际会议1.ICC
- 工信部颁发的《计算机视觉处理设计开发工程师》中级证书
人工智能技术与咨询
人工智能计算机视觉自然语言处理
计算机视觉(ComputerVision)是一门研究如何让计算机能够理解和分析数字图像或视频的学科。简单来说,计算机视觉的目标是让计算机能够像人类一样对视觉信息进行处理和理解。为实现这个目标,计算机视觉结合了图像处理、机器学习、模式识别、计算几何等多个领域的理论和技术。计算机视觉在许多领域和行业中具有广泛应用,如自动驾驶、医疗影像分析、无人机、智能监控、虚拟现实(VR)和增强现实(AR)等。随着深
- 【大厂AI课学习笔记】1.5 AI技术领域(2)语音识别
giszz
学习笔记人工智能人工智能学习笔记
今天来梳理语音识别相关的关键技术和发展脉络。语音识别:定义、关键技术、技术发展、应用场景与商业化成功一、语音识别的定义语音识别,也称为自动语音识别(ASR),是指将人类的语音转换为机器可读的文本或命令的技术。它是人机交互的重要组成部分,旨在让计算机能够理解并执行人类的语音指令。语音识别技术涉及到信号处理、模式识别、自然语言处理等多个领域的知识。二、关键技术信号处理和特征提取:语音信号是一种复杂的时
- 深度学习在智能交互中的应用:人与机器的和谐共生
wd90119
深度学习人工智能
深度学习与人类的智能交互是当前人工智能领域研究的热点之一。深度学习作为机器学习的一个重要分支,具有强大的特征学习和模式识别能力,可以模拟人脑的神经网络进行数据分析和预测。而人类的智能交互则是指人类与机器之间的信息交流和操作互动,包括语音识别、图像识别、自然语言处理等技术。深度学习与人类的智能交互相结合,可以实现更加自然、高效和智能的人机交互方式。例如,通过深度学习的语音识别技术,机器可以理解和识别
- 深度学习的进展
csdn_aspnet
深度学习人工智能
一、深度学习的基本原理和算法:深度学习是一种基于神经网络的机器学习方法,其基本原理是模仿人脑神经网络的结构和功能,通过多层次的神经网络模型来实现对数据的学习和模式识别。以下是深度学习的基本原理和算法:1、输入层:深度学习的输入层接收原始数据,这可以是图像、文本、音频等各种形式的数据。2、隐藏层:深度学习的核心是多层的隐藏层。每一层都由大量的神经元(节点)组成,每个神经元都与上一层的所有神经元相连,
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分