弗洛伊德算法

弗洛伊德算法介绍

弗洛伊德算法和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

  • 基本思想

    通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

    假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > “a[i][0]+a[0][j]”(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > “a[i][k]+a[k][j]”,则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

  • 弗洛伊德算法图解

弗洛伊德算法_第1张图片

  • 以上图G4为例,来对弗洛伊德进行算法演示。
    弗洛伊德算法_第2张图片
  • 初始状态:S是记录各个顶点间最短路径的矩阵。
  • 第1步:初始化S。
    矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。
    注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
  • 第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
    以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。

同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。

弗洛伊德算法
/*
 * floyd最短路径。
 * 即,统计图中各个顶点间的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *     path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
 *     dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
 */
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
     
    int i,j,k;
    int tmp;

    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
     
        for (j = 0; j < G.vexnum; j++)
        {
     
            dist[i][j] = G.matrix[i][j];    // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
            path[i][j] = j;                 // "顶点i"到"顶点j"的最短路径是经过顶点j。
        }
    }

    // 计算最短路径
    for (k = 0; k < G.vexnum; k++)
    {
     
        for (i = 0; i < G.vexnum; i++)
        {
     
            for (j = 0; j < G.vexnum; j++)
            {
     
                // 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
                tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
                if (dist[i][j] > tmp)
                {
     
                    // "i到j最短路径"对应的值设,为更小的一个(即经过k)
                    dist[i][j] = tmp;
                    // "i到j最短路径"对应的路径,经过k
                    path[i][j] = path[i][k];
                }
            }
        }
    }

    // 打印floyd最短路径的结果
    printf("floyd: \n");
    for (i = 0; i < G.vexnum; i++)
    {
     
        for (j = 0; j < G.vexnum; j++)
            printf("%2d  ", dist[i][j]);
        printf("\n");
    }
}

弗洛伊德算法_第3张图片

你可能感兴趣的:(数据结构,算法,数据结构,算法)