光照贴图
原理:
用一个图进行纹理贴图,另一张图用于纹理采样进行镜面光照计算
main.cpp
#include
#include
// GLEW
#define GLEW_STATIC
#include
// GLFW
#include
// Other Libs
#include
// GLM Mathematics
#include
#include
#include
// Other includes
#include "Shader.h"
#include "Camera.h"
#pragma comment(lib, "./SOIL.lib")
#pragma comment (lib, "opengl32.lib")
#pragma comment (lib, "glew32s.lib")
#pragma comment (lib, "glfw3.lib")
#pragma comment (lib, "glfw3dll.lib")
#pragma comment (lib, "glew32mxs.lib")
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void do_movement();
// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 600;
// Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
GLfloat lastX = WIDTH / 2.0;
GLfloat lastY = HEIGHT / 2.0;
bool keys[1024];
// Light attributes
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
// Deltatime
GLfloat deltaTime = 0.0f; // Time between current frame and last frame
GLfloat lastFrame = 0.0f; // Time of last frame
// The MAIN function, from here we start the application and run the game loop
int main()
{
// Init GLFW
glfwInit();
// Set all the required options for GLFW
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
// Create a GLFWwindow object that we can use for GLFW's functions
GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
glfwMakeContextCurrent(window);
// Set the required callback functions
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// GLFW Options
//glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Set this to true so GLEW knows to use a modern approach to retrieving function pointers and extensions
glewExperimental = GL_TRUE;
// Initialize GLEW to setup the OpenGL Function pointers
glewInit();
// Define the viewport dimensions
glViewport(0, 0, WIDTH, HEIGHT);
// OpenGL options
glEnable(GL_DEPTH_TEST);
// Set up vertex data (and buffer(s)) and attribute pointers
GLfloat vertices[] = {
// Positions // Normals // Texture Coords
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f
};
// First, set the container's VAO (and VBO)
GLuint VBO, containerVAO;
glGenVertexArrays(1, &containerVAO);
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glBindVertexArray(containerVAO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glBindVertexArray(0);
// Then, we set the light's VAO (VBO stays the same. After all, the vertices are the same for the light object (also a 3D cube))
GLuint lightVAO;
glGenVertexArrays(1, &lightVAO);
glBindVertexArray(lightVAO);
// We only need to bind to the VBO (to link it with glVertexAttribPointer), no need to fill it; the VBO's data already contains all we need.
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// Set the vertex attributes (only position data for the lamp))
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0); // Note that we skip over the other data in our buffer object (we don't need the normals/textures, only positions).
glEnableVertexAttribArray(0);
glBindVertexArray(0);
// Load textures
GLuint diffuseMap, specularMap;
glGenTextures(1, &diffuseMap);
glGenTextures(1, &specularMap);
int width, height;
unsigned char* image;
// Diffuse map
image = SOIL_load_image("./img/container.png", &width, &height, 0, SOIL_LOAD_RGB);
glBindTexture(GL_TEXTURE_2D, diffuseMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
SOIL_free_image_data(image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST_MIPMAP_NEAREST);
// Specular map
image = SOIL_load_image("./img/container_specular.png", &width, &height, 0, SOIL_LOAD_RGB);
glBindTexture(GL_TEXTURE_2D, specularMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
glGenerateMipmap(GL_TEXTURE_2D);
SOIL_free_image_data(image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST_MIPMAP_NEAREST);
//glBindTexture(GL_TEXTURE_2D, 0);
// Build and compile our shader program
Shader objShader("./shader/obj.vs", "./shader/obj.frag");
Shader lampShader("./shader/lamp.vs", "./shader/lamp.frag");
// Set texture units
objShader.useShaderPrograme();
glUniform1i(glGetUniformLocation(objShader.getPrograme(), "material.diffuse"), 0);
glUniform1i(glGetUniformLocation(objShader.getPrograme(), "material.specular"), 1);
while (!glfwWindowShouldClose(window))
{
// Calculate deltatime of current frame
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
glfwPollEvents();
do_movement();
// Clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use cooresponding shader when setting uniforms/drawing objects
objShader.useShaderPrograme();
GLint lightPosLoc = glGetUniformLocation(objShader.getPrograme(), "light.position");
GLint viewPosLoc = glGetUniformLocation(objShader.getPrograme(), "viewPos");
glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);
glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z);
// Set lights properties
glUniform3f(glGetUniformLocation(objShader.getPrograme(), "light.ambient"), 0.2f, 0.2f, 0.2f);
glUniform3f(glGetUniformLocation(objShader.getPrograme(), "light.diffuse"), 0.5f, 0.5f, 0.5f);
glUniform3f(glGetUniformLocation(objShader.getPrograme(), "light.specular"), 1.0f, 1.0f, 1.0f);
// Set material properties
glUniform1f(glGetUniformLocation(objShader.getPrograme(), "material.shininess"), 32.0f);
// Create camera transformations
glm::mat4 view;
view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
// Get the uniform locations
GLint modelLoc = glGetUniformLocation(objShader.getPrograme(), "model");
GLint viewLoc = glGetUniformLocation(objShader.getPrograme(), "view");
GLint projLoc = glGetUniformLocation(objShader.getPrograme(), "projection");
// Pass the matrices to the shader
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
// Bind diffuse map
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, diffuseMap);
// Bind specular map
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, specularMap);
// Draw the container (using container's vertex attributes)
glBindVertexArray(containerVAO);
glm::mat4 model;
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
// Also draw the lamp object, again binding the appropriate shader
lampShader.useShaderPrograme();
// Get location objects for the matrices on the lamp shader (these could be different on a different shader)
modelLoc = glGetUniformLocation(lampShader.getPrograme(), "model");
viewLoc = glGetUniformLocation(lampShader.getPrograme(), "view");
projLoc = glGetUniformLocation(lampShader.getPrograme(), "projection");
// Set matrices
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
model = glm::mat4();
model = glm::translate(model, lightPos);
model = glm::scale(model, glm::vec3(0.2f)); // Make it a smaller cube
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// Draw the light object (using light's vertex attributes)
glBindVertexArray(lightVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
// Swap the screen buffers
glfwSwapBuffers(window);
}
// Terminate GLFW, clearing any resources allocated by GLFW.
glfwTerminate();
return 0;
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key < 1024)
{
if (action == GLFW_PRESS)
keys[key] = true;
else if (action == GLFW_RELEASE)
keys[key] = false;
}
}
void do_movement()
{
// Camera controls
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
if (keys[GLFW_KEY_I])
lightPos.y += 0.1f;
if (keys[GLFW_KEY_K])
lightPos.y -= 0.1f;
if (keys[GLFW_KEY_J])
lightPos.x -= 0.1f;
if (keys[GLFW_KEY_L])
lightPos.x += 0.1f;
if (keys[GLFW_KEY_O])
{
glm::vec3 lightPosRst(1.2f, 1.0f, 2.0f);
lightPos = lightPosRst;
}
}
bool firstMouse = true;
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos; // Reversed since y-coordinates go from bottom to left
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
Camera.h
//Camera.h
#pragma once
// Std. Includes
#include
// GL Includes
#include
#include
#include
// 摄像机移动方向 程序中用WSAD控制
enum Camera_Movement {
FORWARD,
BACKWARD,
LEFT,
RIGHT
};
// Default camera values
const GLfloat YAW = -90.0f;
const GLfloat PITCH = 0.0f;
const GLfloat SPEED = 3.0f;
const GLfloat SENSITIVTY = 0.25f;
const GLfloat ZOOM = 45.0f;
class Camera
{
public:
// Camera Attributes
glm::vec3 Position;
glm::vec3 Front;
glm::vec3 Up;
glm::vec3 Right;
glm::vec3 WorldUp;
// Eular Angles
GLfloat Yaw;
GLfloat Pitch;
// Camera options
GLfloat MovementSpeed;
GLfloat MouseSensitivity;
GLfloat Zoom;
// Constructor with vectors
Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f),
glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), GLfloat yaw = YAW,
GLfloat pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)),
MovementSpeed(SPEED), MouseSensitivity(SENSITIVTY), Zoom(ZOOM)
{
this->Position = position;
this->WorldUp = up;
this->Yaw = yaw;
this->Pitch = pitch;
this->updateCameraVectors();
}
// Constructor with scalar values
Camera(GLfloat posX, GLfloat posY, GLfloat posZ, GLfloat upX, GLfloat upY,
GLfloat upZ, GLfloat yaw, GLfloat pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)),
MovementSpeed(SPEED), MouseSensitivity(SENSITIVTY), Zoom(ZOOM)
{
this->Position = glm::vec3(posX, posY, posZ);
this->WorldUp = glm::vec3(upX, upY, upZ);
this->Yaw = yaw;
this->Pitch = pitch;
this->updateCameraVectors();
}
// Returns the view matrix calculated using Eular Angles and the LookAt Matrix
glm::mat4 GetViewMatrix()
{
return glm::lookAt(this->Position, this->Position + this->Front, this->Up);
}
// 按键处理
void ProcessKeyboard(Camera_Movement direction, GLfloat deltaTime)
{
GLfloat velocity = this->MovementSpeed * deltaTime;
if (direction == FORWARD)
this->Position += this->Front * velocity;
if (direction == BACKWARD)
this->Position -= this->Front * velocity;
if (direction == LEFT)
this->Position -= this->Right * velocity;
if (direction == RIGHT)
this->Position += this->Right * velocity;
}
// 鼠标移动处理
void ProcessMouseMovement(GLfloat xoffset, GLfloat yoffset,
GLboolean constrainPitch = true)
{
xoffset *= this->MouseSensitivity;
yoffset *= this->MouseSensitivity;
this->Yaw += xoffset;
this->Pitch += yoffset;
// Make sure that when pitch is out of bounds, screen doesn't get flipped
if (constrainPitch)
{
if (this->Pitch > 89.0f)
this->Pitch = 89.0f;
if (this->Pitch < -89.0f)
this->Pitch = -89.0f;
}
// Update Front, Right and Up Vectors using the updated Eular angles
this->updateCameraVectors();
}
// Processes input received from a mouse scroll-wheel event.
// Only requires input on the vertical wheel-axis
void ProcessMouseScroll(GLfloat yoffset)
{
if (this->Zoom >= 1.0f && this->Zoom <= 45.0f)
this->Zoom -= yoffset;
if (this->Zoom <= 1.0f)
this->Zoom = 1.0f;
if (this->Zoom >= 45.0f)
this->Zoom = 45.0f;
}
private:
// Calculates the front vector from the Camera's (updated) Eular Angles
void updateCameraVectors()
{
// Calculate the new Front vector
glm::vec3 front;
front.x = cos(glm::radians(this->Yaw)) * cos(glm::radians(this->Pitch));
front.y = sin(glm::radians(this->Pitch));
front.z = sin(glm::radians(this->Yaw)) * cos(glm::radians(this->Pitch));
this->Front = glm::normalize(front);
// Also re-calculate the Right and Up vector
// Normalize the vectors, because their length gets closer to 0 the more
// you look up or down which results in slower movement.
this->Right = glm::normalize(glm::cross(this->Front, this->WorldUp));
this->Up = glm::normalize(glm::cross(this->Right, this->Front));
}
};
Shader.h
//Shader.h
#pragma once
#ifndef TEXTURE_SHADER_H_
#define TEXTURE_SHADER_H_
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
class Shader
{
public:
Shader(const GLchar* vertexPath, const GLchar* fragmentPath);
~Shader();
public:
void useShaderPrograme();
GLuint getPrograme() {
return this->m_nProgram;
}
private:
GLuint m_nProgram;
};
Shader::Shader(const GLchar* vertexPath, const GLchar* fragmentPath)
{
std::string vertexCode;
std::string fragmentCode;
std::ifstream vertexShaderF;
std::ifstream fragementShaderF;
vertexShaderF.exceptions(std::ifstream::badbit);
fragementShaderF.exceptions(std::ifstream::badbit);
try
{
vertexShaderF.open(vertexPath); // 打开文件
fragementShaderF.open(fragmentPath);
std::stringstream vertexShaderStream, fragementShaderStream;
vertexShaderStream << vertexShaderF.rdbuf(); // 读取文件至stringstream中
fragementShaderStream << fragementShaderF.rdbuf();
vertexShaderF.close();
fragementShaderF.close();
vertexCode = vertexShaderStream.str(); // 转换成string类型
fragmentCode = fragementShaderStream.str();
}
catch (std::ifstream::failure e)
{
std::cout << "ERROR::SHADER::FILE_NOT_SUCCESSFULLY_READ:" << std::endl;
}
const GLchar* pVertexCode = vertexCode.c_str(); // string 转 char*
const GLchar* pFragementCode = fragmentCode.c_str();
GLuint nVertexShader, nFragementShader;
GLint nRes = 0;
GLchar chLogInfo[512] = { '\0' };
// 创建顶点着色器
nVertexShader = glCreateShader(GL_VERTEX_SHADER);
// 将顶点着色程序的源代码字符数组绑定到顶点着色器对象
glShaderSource(nVertexShader, 1, &pVertexCode, nullptr);
glCompileShader(nVertexShader); // compile shader 编译着色器
// 获取编译结果
glGetShaderiv(nVertexShader, GL_COMPILE_STATUS, &nRes);
if (!nRes)
{
glGetShaderInfoLog(nVertexShader, 512, nullptr, chLogInfo);
std::cout << "ERROR::SHADEF::VERTEX::COMPILATION_FAILED:" << chLogInfo << std::endl;
}
// 创建片断着色器
nFragementShader = glCreateShader(GL_FRAGMENT_SHADER);
// 将片段着色程序的源代码字符数组绑定到片段着色器对象
glShaderSource(nFragementShader, 1, &pFragementCode, nullptr);
glCompileShader(nFragementShader);
glGetShaderiv(nFragementShader, GL_COMPILE_STATUS, &nRes);
if (!nRes)
{
glGetShaderInfoLog(nFragementShader, 512, nullptr, chLogInfo);
std::cout << "ERROR::SHADEF::FRAGEMENT::COMPILATION_FAILED:" << chLogInfo << std::endl;
}
this->m_nProgram = glCreateProgram(); // 创建GLSL程序
glAttachShader(this->m_nProgram, nVertexShader); // 绑定shader到program
glAttachShader(this->m_nProgram, nFragementShader);
// glLinkProgram操作产生最后的可执行程序,它包含最后可以在硬件上执行的硬件指令
glLinkProgram(this->m_nProgram); // 链接
glGetProgramiv(this->m_nProgram, GL_LINK_STATUS, &nRes);
if (!nRes)
{
glGetProgramInfoLog(this->m_nProgram, 512, nullptr, chLogInfo);
std::cout << "ERROR::SHADEF::FRAGEMENT::LINK_FAILED:" << chLogInfo << std::endl;
}
glDeleteShader(nVertexShader);
glDeleteShader(nFragementShader);
}
Shader::~Shader()
{
}
#include
#include
#include
void Shader::useShaderPrograme()
{
glUseProgram(this->m_nProgram); // 使用porgram
}
#endif
Shader部分
obj.vs
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 2) in vec2 texCoords;
out vec3 Normal;
out vec3 FragPos;
out vec2 TexCoords;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f);
FragPos = vec3(model * vec4(position, 1.0f));
Normal = mat3(transpose(inverse(model))) * normal;
TexCoords = texCoords;
}
obj.frag
#version 330 core
struct Material {
sampler2D diffuse;
sampler2D specular;
float shininess;
};
struct Light {
vec3 position;
vec3 ambient;
vec3 diffuse;
vec3 specular;
};
in vec3 FragPos;
in vec3 Normal;
in vec2 TexCoords;
out vec4 color;
uniform vec3 viewPos;
uniform Material material;
uniform Light light;
void main()
{
// Ambient
vec3 ambient = light.ambient * vec3(texture(material.diffuse, TexCoords));
// Diffuse
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(light.position - FragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, TexCoords));
// Specular
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = light.specular * spec * vec3(texture(material.specular, TexCoords));
color = vec4(ambient + diffuse + specular, 1.0f);
}
lamp.vs
#version 330 core
layout (location = 0) in vec3 position;
uniform mat4 model;
uniform mat4 projection;
void main()
{
gl_Position = projection * model * vec4(position, 1.0f);
}
lamp.frag
#version 330 core
out vec4 color;
void main()
{
color = vec4(1.0f, 1.0f, 1.0f, 1.0f);
}
源码: VS2015
http://download.csdn.net/detail/yulinxx/9851467