- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 【课程作业_01】国科大2023模式识别与机器学习实践作业
lzl2040
我的笔记python机器学习数据集人工智能
国科大2023模式识别与机器学习实践作业作业内容从四类方法中选三类方法,从选定的每类方法中,各选一种具体的方法,从给定的数据集中选一个数据集(MNIST,CIFAR-10,电信用户流失数据集)对这三种方法进行测试比较。第一类方法::线性方法:线性SVM、LogisticRegression第二类方法:非线性方法:KernelSVM,决策树第三类方法:集成学习:Bagging,Boosting第四类
- 模式识别与机器学习—PCA分析
在下雨599
模式识别复习机器学习人工智能
主成分分析将高维空间线性投影到一个低维空间,希望在这个低维空间能够表征高维空间中的绝大部分信息,即信息损失最小。关键:找到投影方向补充知识:主成分分析(PCA)目标函数1:最小化重建误差主成分分析(PCA)目标函数2:最大投影后的方差
- 国科大模式识别与机器学习2015-2019、2021仅考题
智商欠费,不死也废
期末机器学习人工智能
2015(8)试描述线性判别函数的基本概念,并说明既然有线性判别函,为什么还需要非线性判别函数?假设有两种模式,每类包括6个4维不同的模式,且良好分布。如果他们是线性可分的。问权向量至少需要几个系数分量?假如要建立额尔茨的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变)(8分)简述偏差方差分解及其推导过程,并说明偏差、方差、噪声三部分的内在含义。(8分)试描述用EM算
- 模式识别与机器学习-半监督学习
Kilig*
机器学习机器学习学习人工智能
模式识别与机器学习-半监督学习半监督学习半监督学习的三个假设半监督学习算法自学习算法自学习的步骤:自学习的优缺点:优点:缺点:协同训练多视角学习生成模型半监督SVM谨以此博客作为复习期间的记录半监督学习半监督学习(Semi-SupervisedLearning)是机器学习的一种范式,它利用同时包含标记(有标签)和未标记(无标签)数据的数据集来进行模型训练。相比于监督学习和无监督学习,半监督学习尝试
- 模式识别与机器学习-概率图模型
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-概率图模型概率图模型三大基本问题表示推断学习有向概率图模型例子三种经典的图HMMViterbi算法谨以此博客作为复习期间的记录概率图模型三大基本问题概率图模型通常涉及三个基本问题,即表示(Representation)、推断(Inference)和学习(Learning)。这三个问题是概率图模型中关键的核心概念。表示(Representation):表示问题涉及选择合适的图结构
- 模式识别与机器学习-集成学习
Kilig*
机器学习机器学习集成学习人工智能
集成学习集成学习思想过拟合与欠拟合判断方法K折交叉验证BootstrapBagging随机森林的特点和工作原理:BoostingAdaBoost工作原理:AdaBoost的特点和优点:AdaBoost的缺点:GradientBoosting工作原理:GradientBoosting的特点和优点:GradientBoosting的变种:Bagging和Boosting算法比较Bagging(Boot
- 模式识别与机器学习-无监督学习-降维
Kilig*
机器学习机器学习学习人工智能
模式识别与机器学习-无监督学习-降维为什么要降维维度选择手工移除特征过滤式选择包裹式选择嵌入式选择维度抽取(线性模型)MDSPCA目标1:最小重构误差目标2:最大投影方差SVD思考:为什么保留特征值大的?维度抽取(非线性模型)KPCA流形学习ISOMAP优点:缺点:LLET-SNE谨以此博客作为复习期间的记录为什么要降维消除冗余信息和噪声:原始数据集可能包含大量冗余特征或噪声,这些特征可能对模型训
- 模式识别与机器学习-SVM(带软间隔的支持向量机)
Kilig*
机器学习支持向量机机器学习算法
SVM(带软间隔的支持向量机)软间隔思想的由来软间隔的引入谨以此博客作为复习期间的记录。软间隔思想的由来在上一篇博客中,回顾了线性可分的支持向量机,但在实际情况中,很少有完全线性可分的情况,大部分线性可分的情况都是整体线性可分,个别样本点无法线性分割开。因此就要避免这极个别样本点对分割平面产生的影响。线性可分支持向量机软间隔的引入在分类过程中,允许极个别数据点“越界”,如何在目标函数中体现这一点呢
- 模式识别与机器学习-无监督学习-聚类
Kilig*
机器学习机器学习学习聚类
无监督学习-聚类监督学习&无监督学习K-meansK-means聚类的优点:K-means的局限性:解决方案:高斯混合模型(GaussianMixtureModels,GMM)多维高斯分布的概率密度函数:高斯混合模型(GaussianMixtureModel,GMM)模型形式:EM算法迭代过程:K-means与高斯混合模型(GMM)的对比:K-means:高斯混合模型(GMM):高斯混合模型(GM
- 模式识别与机器学习-SVM(线性支持向量机)
Kilig*
机器学习支持向量机机器学习算法
线性支持向量机线性支持向量机间隔距离学习的对偶算法算法:线性可分支持向量机学习算法线性可分支持向量机例子谨以此博客作为复习期间的记录线性支持向量机在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢?其实可以看出,黑色的线具有更好的性质,因为如果将黑色的线作为分割平面,将会有更大的间隔距离。其中,分割平面可以用以下式子表示:wx+b=0wx+b=0wx+b=0w和bw\t
- 模式识别与机器学习-SVM(核方法)
Kilig*
机器学习机器学习支持向量机人工智能
SVM(核方法)核方法核技巧在SVM中的应用谨以此博客作为复习期间的记录核方法对解线性分类问题,线性分类支持向量机是一种非常有效的方法.但是,有时分类问题是非线性的,这时可以使用非线性支持向量机,核心思想是通过核方法将低维非线性可分数据转化为高维线性可分数据。非线性问题往往不好求解,所以希望能用解线性分类问题的方法解决这个问题.所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题,通过解变
- 模式识别与机器学习第一章
露(^_^)
模式识别与机器学习python
一、模式的概念广义:存在于时间和空间中可观察的物体。如果可以区别它们是否相同或是否相似,都可以称之为模式。狭义:模式所指的不是事物本身,而是从事物获得的信息,模式往往表现为具有时间和空间分布的信息。模式的直观特性:可观察性、可区分性、相似性。二、模式识别的概念模式识别:直观,无所不在,“人以类聚,物以群分”。目的:利用计算机对物理对象进行分类,在错误概率最小的条件下,使识别的结果尽量与客观物体相符
- 模式识别与机器学习(十二):Stacking
从零开始的奋豆
模式识别与机器学习机器学习人工智能
原理在本次实验中以决策树、svm和随机森林为基学习器,以决策树为元学习器。Stacking的做法是首先构建多个不同类型的一级学习器,并使用他们来得到一级预测结果,然后基于这些一级预测结果,构建一个二级学习器,来得到最终的预测结果。Stacking的动机可以描述为:如果某个一级学习器错误地学习了特征空间的某个区域,那么二级学习器通过结合其他一级学习器的学习行为,可以适当纠正这种错误。具体步骤如下图所
- 模式识别与机器学习(十二):随机森林
从零开始的奋豆
模式识别与机器学习机器学习随机森林人工智能
原理随机森林(RandomForest,RF)是Bagging的一个扩展变体。RF在以决策树为基学习器构建Bagging集成的基础上,在决策树的训练过程中引入随机属性选择。训练每颗决策树时随机选出部分特征作为输入,所以该算法被称为随机森林算法。在RF中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集(假定有d个属性),然后再从这个子集中选择一个最优属性用于划分。参数k控
- 模式识别与机器学习-特征选择和提取
Kilig*
机器学习机器学习人工智能
模式识别与机器学习-特征选择和提取特征选择一些距离测度公式独立特征的选择准则一般特征的散布矩阵准则离散K-L变换谨以此博客作为复习期间的记录。常见分类问题的流程,数据预处理和特征选择提取时机器学习环节中最重要的两个流程。这两个环节直接决定了最终性能的上下限,本部分记录一下特征提取和选择部分(特征工程)特征选择可以表示为:从一个包含n个度量值的集合{x1,x2,…,xn}\{x_1,x_2,\dot
- 模式识别与机器学习第三章
露(^_^)
模式识别与机器学习python
一、线性判别函数1.两类问题的判别函数若这些属于ω1和ω2两类的模式可用一个直线方程d(x)=0来划分,d(x)=w1x1+w2x2+w3=0d(x)称为两类模式的判别函数;d(x)=0称为决策面/判别界面方程。用判别函数进行模式分类依赖的两个因素:(1)判别函数的几何性质:线性的和非线性的函数。(2)判别函数的系数:判别函数的形式确定后,主要就是确定判别函数的系数问题。2.n维线性判别函数的一般
- 【模式识别与机器学习】——2.2正态分布模式的贝叶斯分类器
weixin_30421809
人工智能
出发点:当已知或者有理由设想类概率密度函数P(x|ωi)是多变量的正态分布时,上一节介绍的贝叶斯分类器可以导出一些简单的判别函数。由于正态密度函数易于分析,且对许多重要的实际应用又是一种合适的模型,因此受到很大的重视。(贝叶斯分类规则是基于统计概念的。如果只有少数模式样本,一般较难获得最优的结果)正态分布模式的贝叶斯判别函数具有M种模式类别的多变量正态类密度函数为:其中,每一类模式的分布密度都完全
- 模式识别与机器学习-判别式分类器
Kilig*
机器学习人工智能
模式识别与机器学习-判别式分类器生成式模型和判别式模型的区别线性判别函数多分类情况多分类情况1多分类情况2多分类情况3例题广义线性判别函数实例分段线性判别函数Fisher线性判别感知机算法例:感知机多类别分类谨以此博客作为学习期间的记录生成式模型和判别式模型的区别生成式模型关注如何生成整个数据的分布,而判别式模型则专注于学习如何根据给定输入预测输出标签或数值。在实践中多数判别式模型要优于生成式模型
- 模式识别与机器学习(十一):Bagging
从零开始的奋豆
模式识别与机器学习机器学习
1.原理Bagging[Breiman,1996a]是井行式集成学习方法最著名的代表.从名字即可看出,它直接基于自助采样法(bootstrapsampling)。给定包含m个样本的数据集,我们先随机取出一个样本放入采样集中,再把该样本放回初始数据集,使得下次采样时该样本仍有可能被选中,这样,经过m次随机采样操作,我们得到含m个样本的采样集,初始训练集中有的样本在采样集里多次出现,有的则从未出现,初
- 模式识别与机器学习(十):梯度提升树
从零开始的奋豆
模式识别与机器学习机器学习人工智能
1.原理提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:fM(x)=∑m=1MT(x;θm)f_M(x)=\sum_{m=1}^MT(x;\theta_m)fM(x)=m=1∑MT(x;θm)其中,T(x;θm)T(x;\
- 模式识别与机器学习(九):Adaboost
从零开始的奋豆
模式识别与机器学习机器学习人工智能
1.原理AdaBoost是AdaptiveBoosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或预先指定的最大迭代次数再确定最后的强分类器。1.算法步骤首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则
- 模式识别与机器学习(八):决策树
从零开始的奋豆
模式识别与机器学习机器学习决策树人工智能
1.原理决策树(DecisionTree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。一般,一棵决策树包含一个根节点,若干个内部结点和若干个叶结点。叶结点对应于决策结果,其他
- 模式识别与机器学习(七):集成学习
从零开始的奋豆
模式识别与机器学习机器学习集成学习人工智能
集成学习1.概念1.1类型1.2集成策略1.3优势2.代码实例2.1boosting2.2bagging2.3集成1.概念集成学习是一种机器学习方法,旨在通过组合多个个体学习器的预测结果来提高整体的预测性能。它通过将多个弱学习器(个体学习器)组合成一个强学习器,以获得更准确、更稳定的预测结果。在集成学习中,个体学习器可以是同质的(使用相同的学习算法,但在不同的训练集上训练)或异质的(使用不同的学习
- 图像形状及数量识别(matlab实现)
一寸光阴不可轻
matlab计算机视觉图像处理
米粒形状识别文章目录米粒形状识别概述一、图像处理1.图像去噪2.图像锐化3.边缘提取4.特征匹配二、matlab实现三、总程序代码结语概述基于视觉的沙粒形状识别系统模型需要借助计算机对特征的信息处理和分析,实现像人一样的智能识别,所以通常模式识别与机器学习存在着一定的联系。机器识别技术的实现主要分为以下几个步骤:(1)获取图像数据。(2)数据预处理。(3)图像特征提取。(4)设置分类器完成分类。基
- 模式识别与机器学习(六):数据降维
从零开始的奋豆
模式识别与机器学习matlab算法机器学习
1.数据降维数据降维有很多种,这里我们列出几个较为简单的2.PCAPCA是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督降维算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由KarlPearson在1901年提出,属于线性降维方法。与PCA相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。求中心化后样本矩阵的协方差。求协
- 模式识别与机器学习(二):贝叶斯分类matlab实现
从零开始的奋豆
模式识别与机器学习分类人工智能数据挖掘
一.最小错误率step1:估计分类样本的各个属性的概率分布step2:估计先验概率step3:估计属于该类别的概率并取最大值这里以正态分布为例clc;clear;%风险表f=ones(4,4);%读数据X=xlsread('数据.xls');x=X(1:15,2:end);x_test=X(16:end,2:4);x1=x(find(x(:,4)==1),1:3);[n1,~]=size(x1);
- 推荐几本机器学习的书籍
古斯塔夫歼星炮
机器学习人工智能深度学习python开发语言
推荐几本机器学习的书籍:《机器学习》(TomM.Mitchell)、《统计学习方法》(李航)、《深度学习》(IanGoodfellow、YoshuaBengio和AaronCourville)、《模式识别与机器学习》(ChristopherM.Bishop)。
- 模式识别与机器学习(一)——引言
谢欣燕
笔记机器学习模式识别
1.1基本概念模式识别:从数据中识别或发现规律,并加以有效使用。为了进行模式识别,往往要借助计算设备进行编程实现和决策执行,这种设备即机器。机器学习:从计算设备的角度出发,是指机器从不具备某方面能力到具备次能力的学习过程,即发现数据中的规律并加以使用的能力。1.1.1投票选举近邻法集成学习主动学习1.2典型的机器学习系统1.2.1医学图像诊断病理图像:高倍显微镜下看到的将人体组织做成病理切片后的图
- 模式识别与机器学习·第二章——统计判别
谷雨·清明
UCAS模式识别与机器学习模式识别机器学习贝叶斯
模式识别与机器学习·第二章——统计判别统计判别的意义贝叶斯判别贝叶斯最小风险判别两类(M=2)情况的贝叶斯最小风险判别多类(M类)情况的贝叶斯最小风险判别正态分布模式的贝叶斯分类器统计判别的意义模式识别的目的就是要确定某一个给定的模式样本属于哪一类。可以通过对被识别对象的多次观察和测量,构成特征向量,并将其作为某一个判决规则的输入,按此规则来对样本进行分类。在获取模式的观测值时,有些事物具有确定的
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts