Linux下socket编程程序实现

实现功能:客户端从服务器读取一个字符串并打印出来。

server.cpp

#include 
#include 
#include 
#include 
#include 
#include 
#include 

int main(){
    //创建套接字
    int serv_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

    //将套接字和IP、端口绑定
    struct sockaddr_in serv_addr;
    memset(&serv_addr, 0, sizeof(serv_addr));  //每个字节都用0填充
    serv_addr.sin_family = AF_INET;  //使用IPv4地址
    serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1");  //具体的IP地址
    serv_addr.sin_port = htons(1234);  //端口
    bind(serv_sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

    //进入监听状态,等待用户发起请求
    listen(serv_sock, 20);

    //接收客户端请求
    struct sockaddr_in clnt_addr;
    socklen_t clnt_addr_size = sizeof(clnt_addr);
    int clnt_sock = accept(serv_sock, (struct sockaddr*)&clnt_addr, &clnt_addr_size);

    //向客户端发送数据
    char str[] = "www.cplusplus.com";
    write(clnt_sock, str, sizeof(str));
   
    //关闭套接字
    close(clnt_sock);
    close(serv_sock);

    return 0;
}

在 Linux 下使用 头文件中 socket() 函数来创建套接字,原型为:

int socket(int af, int type, int protocol);

af 为地址族(Address Family),也就是 IP 地址类型,常用的有 AF_INET 和 AF_INET6。

type 为数据传输方式/套接字类型,常用的有 SOCK_STREAM(流格式套接字/面向连接的套接字) 和 SOCK_DGRAM(数据报套接字/无连接的套接字)

protocol 表示传输协议,常用的有 IPPROTO_TCP 和 IPPTOTO_UDP,分别表示 TCP 传输协议和 UDP 传输协议。


如果使用 SOCK_STREAM 传输数据,那么满足这两个条件的协议只有 TCP,因此可以这样来调用 socket() 函数:

int tcp_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); //IPPROTO_TCP表示TCP协议

这种套接字称为 TCP 套接字。


如果使用 SOCK_DGRAM 传输方式,那么满足这两个条件的协议只有 UDP,因此可以这样来调用 socket() 函数:

int  udp_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); //IPPROTO_UDP表示UDP协议

这种套接字称为 UDP 套接字。


上面两种情况都只有一种协议满足条件,可以将 protocol 的值设为 0,系统会自动推演出应该使用什么协议,如下所示:

int tcp_socket = socket(AF_INET, SOCK_STREAM, 0); //创建TCP套接字

int udp_socket = socket(AF_INET, SOCK_DGRAM, 0); //创建UDP套接字


bind() 函数

bind() 函数的原型为:

int bind(int sock, struct sockaddr *addr, socklen_t addrlen); //Linux

sock 为 socket 文件描述符,addr 为 sockaddr 结构体变量的指针,addrlen 为 addr 变量的大小,可由 sizeof() 计算得出。

//创建套接字
int serv_sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
//创建sockaddr_in结构体变量
struct sockaddr_in serv_addr;
memset(&serv_addr, 0, sizeof(serv_addr));  //每个字节都用0填充
serv_addr.sin_family = AF_INET;  //使用IPv4地址
serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1");  //具体的IP地址
serv_addr.sin_port = htons(1234);  //端口
//将套接字和IP、端口绑定
bind(serv_sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr));

bind() 第二个参数的类型为 sockaddr,而代码中却使用 sockaddr_in,然后再强制转换为 sockaddr,

sockaddr 结构体的定义如下:

struct sockaddr{
       sa_family_t sin_family; //地址族(Address Family),也就是地址类型
       char sa_data[14]; //IP地址和端口号
};

sockaddr_in 结构体

struct sockaddr_in{
      sa_family_t sin_family; //地址族(Address Family),也就是地址类型
      uint16_t sin_port; //16位的端口号
      struct in_addr sin_addr; //32位IP地址
      char sin_zero[8]; //不使用,一般用0填充
};

                                                           Linux下socket编程程序实现_第1张图片

sockaddr 和 sockaddr_in 的长度相同,都是16字节,只是将IP地址和端口号合并到一起,用一个成员 sa_data 表示。要想给 sa_data 赋值,必须同时指明IP地址和端口号,例如”127.0.0.1:80“,遗憾的是,没有相关函数将这个字符串转换成需要的形式,也就很难给 sockaddr 类型的变量赋值,所以使用 sockaddr_in 来代替。这两个结构体的长度相同,强制转换类型时不会丢失字节,也没有多余的字节。

可以认为,sockaddr 是一种通用的结构体,可以用来保存多种类型的IP地址和端口号,而 sockaddr_in 是专门用来保存 IPv4 地址的结构体。

client.cpp

#include 
#include 
#include 
#include 
#include 
#include 

int main(){
    //创建套接字
    int sock = socket(AF_INET, SOCK_STREAM, 0);

    //向服务器(特定的IP和端口)发起请求
    struct sockaddr_in serv_addr;
    memset(&serv_addr, 0, sizeof(serv_addr));  //每个字节都用0填充
    serv_addr.sin_family = AF_INET;  //使用IPv4地址
    serv_addr.sin_addr.s_addr = inet_addr("127.0.0.1");  //具体的IP地址
    serv_addr.sin_port = htons(1234);  //端口
    connect(sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr));
   
    //读取服务器传回的数据
    char buffer[40];
    read(sock, buffer, sizeof(buffer)-1);
   
    printf("Message form server: %s\n", buffer);
   
    //关闭套接字
    close(sock);

    return 0;
}

connect() 函数

connect() 函数用来建立连接,它的原型为:

int connect(int sock, struct sockaddr *serv_addr, socklen_t addrlen);  //Linux

对于服务器端程序,使用 bind() 绑定套接字后,还需要使用 listen() 函数让套接字进入被动监听状态,再调用 accept() 函数,就可以随时响应客户端的请求了。

listen() 函数

通过 listen() 函数可以让套接字进入被动监听状态,它的原型为:

int listen(int sock, int backlog); //Linux

sock 为需要进入监听状态的套接字,backlog 为请求队列的最大长度。

所谓被动监听,是指当没有客户端请求时,套接字处于“睡眠”状态,只有当接收到客户端请求时,套接字才会被“唤醒”来响应请求。

listen() 只是让套接字处于监听状态,并没有接收请求。接收请求需要使用 accept() 函数。

accept() 函数

当套接字处于监听状态时,可以通过 accept() 函数来接收客户端请求。它的原型为:

int accept(int sock, struct sockaddr *addr, socklen_t *addrlen); //Linux

它的参数与 listen() 和 connect() 是相同的:sock 为服务器端套接字,addr 为 sockaddr_in 结构体变量,addrlen 为参数 addr 的长度,可由 sizeof() 求得。

listen() 只是让套接字进入监听状态,并没有真正接收客户端请求,listen() 后面的代码会继续执行,直到遇到 accept()。accept() 会阻塞程序执行(后面代码不能被执行),直到有新的请求到来。

Linux下数据的接收和发送

Linux 不区分套接字文件和普通文件,使用 write() 可以向套接字中写入数据,使用 read() 可以从套接字中读取数据。

write() 的原型为:

ssize_t write(int fd, const void *buf, size_t nbytes);

fd 为要写入的文件的描述符,buf 为要写入的数据的缓冲区地址,nbytes 为要写入的数据的字节数。

write() 函数会将缓冲区 buf 中的 nbytes 个字节写入文件 fd,成功则返回写入的字节数,失败则返回 -1。

read() 的原型为:

ssize_t read(int fd, void *buf, size_t nbytes);

size_t 是通过 typedef 声明的 unsigned int 类型;ssize_t 在 "size_t" 前面加了一个"s",代表 signed,即 ssize_t 是通过 typedef 声明的 signed int 类型。

fd 为要读取的文件的描述符,buf 为要接收数据的缓冲区地址,nbytes 为要读取的数据的字节数。

read() 函数会从 fd 文件中读取 nbytes 个字节并保存到缓冲区 buf,成功则返回读取到的字节数(但遇到文件结尾则返回0),失败则返回 -1。

你可能感兴趣的:(计算机网络基础,linux操作系统)