- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- Redis+Caffeine双层缓存策略对比与实践指南
浅沫云归
后端技术栈小结RedisCaffeine缓存
Redis+Caffeine双层缓存策略对比与实践指南在高并发场景下,缓存是提升系统性能和并发处理能力的关键手段。常见的缓存方案包括远程缓存(如Redis)和本地缓存(如Caffeine)。单层缓存各有优劣,结合两者优势的双层缓存架构已成为生产环境中的最佳实践。本文将基于SpringBoot,从方案对比分析出发,深入探讨Redis、本地Caffeine与双层缓存的实现与性能差异,并给出选型建议与实
- spring boot + caffeine使用
月光一族吖
springbootspringjava
一、Caffeine缓存背景Caffeine是一个高性能、可扩展的Java缓存库,由Google的BenManes开发。Caffeine基于ConcurrentHashMap设计,采用了近似LRU(LeastRecentlyUsed,最近最少使用)算法,以实现高速缓存淘汰策略。Caffeine广泛应用于各类Java项目中,作为一种提高数据读取性能的优秀解决方案。二、Caffeine缓存优点与缺点优
- 两级缓存 Caffeine + Redis 架构:原理、实现与实践
大只鹅
缓存redis架构
一、前言在高性能服务架构设计里,缓存是关键环节。常规做法是将热点数据存于Redis/MemCache等远程缓存,缓存未命中时再查数据库,以此提升访问速度、降低数据库压力。随着发展,架构有了改进,部分场景下单纯远程缓存不够,需结合本地缓存(如Guavacache、Caffeine),形成本地缓存(一级缓存)+远程缓存(二级缓存)的两级缓存架构,进一步提升程序响应与服务性能,其基础访问流程如下(暂不考
- Ehcache、Caffeine、Spring Cache、Redis、J2Cache、Memcached 和 Guava Cache 的主要区别
MonkeyKing.sun
springredismemcached
主流缓存技术Ehcache、Caffeine、SpringCache、Redis、J2Cache、Memcached和GuavaCache的主要区别,涵盖其架构、功能、适用场景和优缺点等方面:Ehcache类型:本地缓存(JVM内存缓存)特点:轻量级,运行在JVM内部,易于集成到Java应用中。支持堆内、堆外和磁盘缓存,适合处理中小型数据集。提供丰富的缓存配置,如TTL(生存时间)、TTI(空闲时
- 《高并发系统性能优化三板斧:缓存 + 异步 + 限流》
猕员桃
10篇关于分布式和高并发性能优化缓存
高并发系统性能优化三板斧:缓存+异步+限流引言在互联网应用的高并发场景下,系统性能面临巨大挑战。以某电商平台会员活动为例,活动期间瞬时QPS可达10万+,若未进行有效优化,服务器将迅速崩溃。本文从缓存、异步、限流三个核心维度,结合实际案例详细解析高并发系统的性能优化策略,并分享全链路压测与问题定位的实战经验。一、缓存策略分层:从本地到分布式的立体防护1.1本地缓存选型与实战(Caffeine)本地
- 2.6 Spring Boot缓存实战:Redis与Caffeine性能对比
SpringBoot缓存实战:Redis与Caffeine深度性能对比一、缓存技术选型核心指标维度Redis(分布式)Caffeine(本地)数据存储位置独立内存服务器应用进程堆内存数据一致性强一致(集群版)最终一致(需额外同步)网络开销存在TCP/IP通信无网络延迟数据容量支持TB级存储受限于JVM堆大小数据结构支持5种核心数据结构仅Key-Value结构持久化能力RDB/AOF需结合其他存储二
- 深入实践Caffeine+Redis两级缓存架构:从原理到高可用设计
搬砖的小熊猫
缓存redis架构
一、为何需要两级缓存架构?在分布式系统中,Redis作为分布式缓存已广泛应用。但当系统面临超高并发读取(如热点商品详情页访问)或超低延迟要求(如金融行情数据推送)时,纯远程缓存面临两大瓶颈:网络IO开销:每次Redis访问需10-50ms的网络延迟带宽瓶颈:单节点Redis吞吐量上限约10万QPS通过引入Caffeine本地缓存作为一级缓存,Redis作为二级缓存,可实现:命中未命中命中未命中客户
- python opencv rgb_opencv-python的RGB与BGR互转方式
weixin_39798497
pythonopencvrgb
一、格式转换opencv读取图片的默认像素排列是BGR,需要转换。PIL库是RGB格式。caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。在Python中,将RGB顺序的图像转成BGR顺序,需要调整channeldimension的各颜色通道顺序。方法1:img=cv2.imread("001.jpg
- caffe之利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字
xunan003
深度学习caffe
一、前沿写这篇博文,是因为一开始在做《21天学习caffe》第6天6.4练习题1的时候看着自己搜索的博文,在不理解其根本的情况下做的,结果显然是错的。在接下来阅读完源代码之后,在第10天学习完caffemodelzoo之后,明白了其中原理,反过来再去做那个习题,一开始在网上搜索并没有完完整整解释整个过程的一篇博文,而是写的不知所云,本着我们初学者互相共享的精神,也方便自己查阅,特详细写一下,将自己
- caffe安装:基于anaconda3---python3.6, linux, 仅CPU
喵酱ooo
目标检测caffeanaconda3python3.6linuxCPU
caffe安装:基于anaconda3---python3.6,linux,仅CPUcaffe安装安装Anaconda3下载caffe配置caffe的Makefile.config安装libboost(基于python3.6)的库编译caffecaffe安装安装Anaconda3下载:Anaconda3-5.0.1-Linux-x86_64.sh默认路径安装(最终安装位置为/home/usenam
- ubuntu 编译caffe makefile.config
AI算法网奇
win/ubuntu
这个是我以前总结的:sudoapt-getinstall-ylibopencv-devpython-opencvsudoapt-getinstall-ybuild-essentialcmakegitpkg-configsudoapt-getinstall-ylibatlas-base-devsudoapt-getinstall-ylibgflags-devlibgoogle-glog-devlib
- caffe中Makefile.config详解
《一夜飘零》
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).#USE_CUDNN:=1"CuDNN是NVIDIA专门
- 【性能飙升】Caffeine缓存框架:SpringBoot的高性能秘籍!
码农Q!
程序员JavaIT缓存springbootspringwindows开发语言javalist
高性能Java本地缓存Caffeine框架介绍及在SpringBoot中的使用代码加详解1.引包importcom.github.benmanes.caffeine.cache.Cache;importcom.github.benmanes.caffeine.cache.Caffeine;importorg.springframework.beans.factory.annotation.Auto
- 一站式讲解本地缓存Caffeine
想用offer打牌
后台缓存缓存
文章目录theme:condensed-night-purple引言本地缓存的必要性多级缓存访问流程使用Caffeine作为本地缓存️添加**SpringCache和Guava依赖**配置Caffeine缓存启用缓存使用缓存注解总结❤️theme:condensed-night-purple引言上次我们讲了本地缓存guava,那么有没有比它更加优秀的本地缓存呢?有的,兄弟,有的。这次我们来讲本地
- 开放词汇检测分割YOLOE从pytorch到caffe
wangxiaobei2017
深度学习训练与移植pytorchcaffe人工智能
开放词汇检测分割YOLOE从pytorch到caffe0.前沿开放词汇检测的概念CLIP模型1.YOLOE环境配置1.1虚拟环境1.2YOLOE模型推理测试1.2.1文本提示检测和分割测试1.2.2无提示检测和分割2.YOLOE网络结构分析2.1网络结构概述2.2可重参数化区域-文本对齐(Re-parameterizableregion-textalignment:RepRTA)2.3语义激活视觉
- 本地缓存Caffeine的基本使用
海光之蓝
工具类spring
1.本地缓存有ehcache,guavacache,caffein这几种常用的实现,下面介绍caffeine在springboot中的使用caffeine官网:github-caffeinjsr-107缓存规范与spring的对照:jsr-107缓存规范与spring的对照caffeine-plus:caffeine-plus单独使用:2.添加依赖com.github.ben-manes.caff
- Web 架构之缓存策略实战:从本地缓存到分布式缓存
互联网搬砖工老肖
web架构原力计划前端架构缓存
文章目录一、思维导图二、正文内容(一)本地缓存1.简介2.常见实现3.使用场景4.优缺点(二)分布式缓存1.简介2.常见实现3.使用场景4.优缺点5.缓存问题及解决方案三、总结一、思维导图缓存策略实战本地缓存分布式缓存简介常见实现使用场景优缺点GuavaCacheCaffeine简介常见实现使用场景优缺点RedisMemcached缓存穿透缓存击穿缓存雪崩解决方案解决方案解决方案二、正文内容(一)
- 解锁Java多级缓存:性能飞升的秘密武器
bxlj_jcj
缓存面试架构缓存架构java面试
一、引言文末有彩蛋在当今高并发、低延迟的应用场景中,传统的单级缓存策略往往难以满足性能需求。随着系统规模扩大,数据访问的瓶颈逐渐显现,如何高效管理缓存成为开发者面临的重大挑战。多级缓存架构应运而生,通过分层缓存设计(如本地缓存+分布式缓存+后端存储),显著减少网络开销、降低数据库压力,成为提升Java应用性能的“秘密武器”。本文将深入剖析多级缓存的核心理念,结合Caffeine、Redis等主流技
- Spring Boot缓存组件Ehcache、Caffeine、Redis、Hazelcast
一只帆記
SpringBoot缓存springbootredis
一、SpringBoot缓存架构核心SpringBoot通过spring-boot-starter-cache提供统一的缓存抽象层:业务代码CacheAbstractionCacheManagerCacheImplementationEhcacheCaffeineRedisHazelcast二、主流缓存工具深度对比特性EhcacheCaffeineRedisHazelcast类型本地缓存本地缓存分
- 【Redis】热点key问题,的原因和处理,一致性哈希,删除大key的方法
{⌐■_■}
redisredis哈希算法数据库
热点Key指单个Key被高并发访问(如爆款商品),导致Redis压力骤增。解决方案应针对“单个Key高并发”:分片缓存:将热点Key分散到不同Redis节点(如按一致性哈希算法分片)。本地缓存:在应用层缓存热点数据(如Caffeine),减少Redis压力。增加缓存副本:为热点数据增加缓存副本,将热点数据复制到多个缓存节点上,分散访问压力。(例如,使用Redis的主从复制,将热点数据存储在多个从节
- 在Windows系统下安装caffe
sunmingliu
最近,在怼着球面卷积神经网络源码看,虽然不出意外的看傻了,但caffe的安装还是需要记录一下的。一开始我是想在Linux系统下实现的,毕竟一开始我把电脑一大块空间给了Linux系统。于是我先颠颠的照着网上的教程把anaconda先安装了。anaconda在Linux下的安装还顺道下了一个COCO数据集,官网没法正常打开,就找到了一个不需要的下载方法,贴一个链接:简单的MSCOCO数据集下载方法然后
- 深度学习FPGA开发方式
jack_201316888
FPGAAI
https://blog.csdn.net/weixin_35729512/article/details/79763952FPGA深度学习的方向概述传统的CNN(Tensorflow、caffe)是在GPU、CPU上面进行的,但因为其功耗高、散热不好、价格昂贵。但是在单纯的FPGA这类芯片上进行深度学习类的算法,往往开发难度大,开发周期漫长,不适合CNN算法的实现。CNN算法的步骤划分,训练(P
- Caffeine 深度解析:从核心原理到生产实践
Pasregret
缓存缓存java面试
Caffeine深度解析:从核心原理到生产实践一、Caffeine核心定位与架构设计1.核心能力矩阵深度解析Caffeine作为Java领域高性能本地缓存库,其设计目标围绕高吞吐量、低延迟、高效内存管理展开,核心能力可从技术特性与业务价值两个维度拆解:缓存策略先进性WindowTinyLfu回收算法:结合时间窗口(Window)与TinyLfu频率统计,相比传统LRU提升10%-15%命中率,尤其
- 多级缓存架构深度解析:从设计原理到生产实践
Pasregret
缓存缓存架构
多级缓存架构深度解析:从设计原理到生产实践一、多级缓存架构核心定位与设计原则1.架构分层与角色定位多级缓存通过分层存储、流量削峰、数据分级实现性能与成本的平衡,典型三层架构如下:层级代表组件存储介质数据特征命中目标成本级别一级缓存Caffeine/Guava本地堆内存热数据(访问量前10%)70%+高二级缓存Redis远程内存温数据(访问量20%-30%)25%+中三级缓存MySQL/ES磁盘/S
- 搭建Caffeine+Redis多级缓存机制
moxiaoran5753
缓存redis数据库
本地缓存的简单实现方案有HashMap,CucurrentHashMap,成熟的本地缓存方案有Guava与Caffeine,企业级应用推荐下面说下两者的区别1.核心异同对比特性GuavaCacheCaffeine诞生背景GoogleGuava库的一部分(2011年)基于GuavaCache重构的现代缓存库(2015+)性能中等(锁竞争较多)极高(优化并发设计,吞吐量提升5~10倍)内存管理基于LR
- 3.JVM调优与内存管理
zizisuo
java
目录一、缓存场景下的内存管理核心挑战堆内缓存与堆外缓存的取舍•堆内缓存(Caffeine/Guava)的GC压力分析•堆外缓存(EhcacheOffheap/MapDB)的内存泄漏防护•混合缓存架构的性能与资源平衡高并发下的内存分配优化•TLAB(Thread-LocalAllocationBuffer)与缓存对象分配效率•大对象(缓存Value)直接进入老年代的策略•年轻代与老年代比例调优(避免
- OpenCV学习笔记:使用OpenCV的DNN模块调用Caffe进行人脸识别
EbCoder
机器学习-深度学习
在计算机视觉和图像处理领域,人脸识别是一个重要的任务。OpenCV是一个广泛使用的开源计算机视觉库,它提供了强大的功能来处理图像和视频。OpenCV的DNN(深度神经网络)模块允许我们使用已经训练好的深度学习模型进行图像识别任务。本文将介绍如何使用OpenCV的DNN模块调用Caffe框架训练的人脸识别模型。首先,我们需要安装OpenCV和Caffe。确保您已经正确安装了这两个库,并且已经配置好了
- 华为海思系列----昇腾张量编译器(ATC)模型转换工具----入门级使用指南(LINUX版)
不想起名字呢
linuxc++海思ss928atc模型转换
由于官方SDK比较冗余且经常跨文档讲解且SDK整理的乱七八糟,对于新手来说全部看完上手成本较高,本文旨在以简短的方式介绍CAFFE/ONNX模型转om模型,并进行推理的全流程。希望能够帮助到第一次接触华为海思框架的道友们。大佬们就没必要看这种基础文章啦!注:本文所有操作均在WSL(Windows虚拟子系统)上操作的,默认root环境,默认开发板系统为LINUX,所有环境变量均写入bashrc,非虚
- SpringBoot+SpringCache实现两级缓存(Redis+Caffeine)
xfgg
java
1.缓存、两级缓存1.1内容说明Springcache:主要包含springcache定义的接口方法说明和注解中的属性说明springboot+springcache:rediscache实现中的缺陷caffeine简介springboot+springcache实现两级缓存使用缓存时的流程图1.2SpingCachespringcache是spring-context包中提供的基于注解方式使用的
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key