- R语言学习实例:使用R进行数据可视化
PixelCoder
信息可视化r语言学习R语言
R语言学习实例:使用R进行数据可视化R语言是一种功能强大且广泛使用的统计分析和数据可视化工具。在本实例中,我们将使用R语言来创建一些常见的数据可视化图表,包括散点图、柱状图和折线图。我们将展示如何使用R的基本绘图功能和一些常用的绘图库来生成这些图表。散点图是一种用于显示两个变量之间关系的图表。我们可以使用R的基本绘图功能来创建散点图。下面是一个示例代码,展示如何使用R创建散点图:#创建示例数据x<
- 探索R语言:经典案例解析与源代码
翠绿探寻
r语言信息可视化开发语言R语言
探索R语言:经典案例解析与源代码引言:R语言是一种流行的数据分析和统计建模工具,具有丰富的功能和广泛的应用领域。在本文中,我们将通过经典案例来探索R语言的一些重要功能和技术。我们将提供相应的源代码,以便读者能够实际运行并理解这些示例。案例一:数据导入与处理在数据分析中,数据导入和处理是首要任务。R语言提供了丰富的函数和包,用于处理各种数据格式。下面是一个简单的示例,演示了如何导入和处理CSV格式的
- R语言dataframe数据索引、访问: 使用attach函数绑定dataframe数据、这样可以直接使用列名称访问dataframe的列数据
omhdxgb
R语言123r语言数据挖掘人工智能机器学习数据分析
R语言dataframe数据索引、访问:使用attach函数绑定dataframe数据、这样可以直接使用列名称访问dataframe的列数据目录R语言dataframe数据索引、访问:使用attach函数绑定dataframe数据、这样可以直接使用列名称访问dataframe的列数据R语言特点R语言dataframe数据索引、访问:使用attach函数绑定dataframe数据、这样可以直接使用列
- R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素
omhdxgb
R语言123r语言机器学习数据挖掘人工智能数据分析
R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素目录R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素R语言特点R语言向量vector数据类型元素索引、访问:使用中括号[]和:符号以及乘法符号获取向量中指定范围内的偶数索引元素R可以在CRAN(Comprehensive
- R语言安装github包出现的错误,object "XXX" is not exported by "namespace:viridisLite"
momo酱豆是沃
anaconda各种问题
自己遇上了类似的问题,当时是把所有导致这个问题出现时安装的所有包我都卸载了,再次重装的。弄了很久,我发现都是在安装各种包让我更新我不更新导致的后果R,告诉我一个道理,一定要听话,让你更新就更新,不然我的bug出到让你崩溃。下图借用以为博主的图(https://blog.csdn.net/yw_vine/article/details/79631042)原连接R语言安装github包出现的错误,ob
- R语言 ggplot2 可视化生成高分辨率图片实战
PixelEnigma
r语言开发语言R语言
R语言ggplot2可视化生成高分辨率图片实战在数据分析和可视化领域,R语言一直是研究人员和数据科学家们的首选工具。其中,ggplot2包是R语言中最受欢迎和强大的可视化工具之一。它提供了许多灵活且精美的图形选项,使用户能够轻松创建具有吸引力和信息丰富的图表。本文将介绍如何使用ggplot2包在R语言中生成高分辨率的图片。我们将探索不同的保存选项,以确保我们获得清晰、适应各种输出需求的图像。首先,
- Java 中操作 R:深度整合与高效应用
froginwe11
开发语言
Java中操作R:深度整合与高效应用引言随着大数据和机器学习的快速发展,R语言在数据分析和可视化方面扮演着越来越重要的角色。而Java作为一种广泛应用于企业级应用开发的语言,其强大的功能和稳定性使其成为构建高性能应用的首选。本文将探讨Java如何操作R语言,实现高效的数据分析应用。一、Java操作R的背景R语言优势:R语言拥有丰富的统计分析、数据可视化工具和机器学习算法库,是数据分析领域的首选语言
- R语言对高频交易订单流进行建模分析 4
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流模型拟合1.1实验知识点指数核hawkes过程拟合正反馈强度分析订单量影响分析1.2实验环境R3.4.1Rstudio二、订单流模型拟合在上节中我们对订单流数据做了一些统计分析,对交易的一些特征有了一些粗浅的理解,在本节中我们要做的是利用实际数据来拟合hawkes过程,看一看真实数据的订单流动力学中有什么特征。首先我们仍是选出交易时间内的数据:library(tidyvers
- R语言对高频交易订单流进行建模分析 3
oxuzhenyi
实验楼课程机器学习R
一、实验介绍--订单流数据描述分析1.1实验知识点订单流数据表示订单间隔分析订单信息率平稳性研究订单流动性研究限价单相对价格分析1.2实验环境R3.4.1Rstudio二、订单流数据描述分析2.1订单流数据表示当我们在金融市场上做交易时,可以看到一个委托单簿,上面陈列着买价和卖价以及它们对应的量,举个例子,比特币市场的订单簿:可以看到红色代表的是卖价,或者说是ask,而绿色代表的是买价,或者说是b
- 【自学笔记】R语言基础知识点总览-持续更新
Long_poem
笔记r语言开发语言
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录R语言基础知识点总览1.R语言简介2.R语言安装与环境配置3.R语言基础语法3.1数据类型3.2向量与矩阵3.3数据框与列表4.控制结构4.1条件语句4.2循环结构5.函数6.数据可视化总结R语言基础知识点总览1.R语言简介R是一种用于统计计算和图形的编程语言和软件环境。R语言由RossIhaka和RobertGentlema
- R语言 决策树、svm支持向量机、随机森林
别叫我名字20
R语言决策树支持向量机r语言
本人正在学习R语言,想利用这个平台记录自己一些自己的学习情况,方便以后查找,也想分享出来提供一些资料给同样学习R语言的同学们。(如果内容有错误,欢迎大家批评指正)1.决策树我们使用的还是RStudio自带的数据集iris。#######################决策树模型install.packages("rpart")#安装库library("rpart")dt<-function(dat
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- R语言2——数据类型和基本运算
朝荣
#R语言R语言运算R数据类型
R语言2——数据类型和基本运算目录R语言2——数据类型和基本运算1.R的数据类型1.R的数据类型(1)Logical(逻辑型):只有两个值TRUE,FALSE(2)Numeric(数字):整数、小数等(3)Complex(复合型):带有虚数i的数,如1+2i(4)Character(字符):包含在“”之中,如“hello!”(5)Vectors向量:c()函数,将元素组合成一个向量。c(1,2,3
- R语言获取数据——手工输入数据
蜗牛数据分析
R语言从入门到实战r语言开发语言
在R语言中获取数据集的方法有多种,例如读取Excel文件、数据库中的文件,而当我们没有这些渠道能够获取到数据集时,也可以手工输入数据,即通过键盘输入数据,它是获取数据集的最简单方法。另外,还可以在代码中直接输入数据,下面分别进行介绍。数据编辑器R提供了内置的数据编辑器,通过edit()函数调用该编辑器就可以实现手工输入数据。举例1:通过数据编辑器创建学生成绩表下面实现“学生成绩表”,具体步骤如下:
- R语言——数据框
高现实
r语言
R语言——数据框data.table/data.frame1、数据框数据框是R的一个重要数据类型,用来存储表格数据2、可认为是特殊类型的列表,列表中每个元素(每类)都有同样的长度每一列3、可以是不同的类型(矩阵是相同的)特殊属性:行名row.names4、可以通过读取表格函数read.table()或read.csv()读取数据框5、可以通过调用data.matrix()将数据框转化为矩阵x<-d
- R语言入门——数据类型和数据结构
Sean1014
r语言数据结构r语言
变量基本说明R语言计算的过程中,通常需要使用变量来存放中间结果。变量相当于给定一个空间,只能保存一种数据结构,只保存最后一次被赋值的数据。无需事先声明。命名规则变量名应该尽可能简单、意义明确,命名遵循一定规律,以便与他人交流理解。只能使用字母(区分大小写)、数字、下划线“_”和英文句点“.”给变量命名;不能以数字、下划线作为开头;若以句点开头,第二位不能是数字;变量名有效性原因var_name1.
- 探索大数据分析的无限可能:R语言的应用与实践
Echo_Wish
大数据数据分析r语言数据挖掘
探索大数据分析的无限可能:R语言的应用与实践随着数据时代的来临,大数据已经成为各行各业的重要资产。如何从海量数据中挖掘出有价值的信息,成为了企业和研究人员关注的焦点。在众多的数据分析工具中,R语言因其强大的统计分析功能和丰富的生态系统,备受青睐。本文将深入探讨使用R语言进行大数据分析的方法和实践,并通过实例代码加以说明。为什么选择R语言?R语言是一种专门用于统计分析和数据可视化的编程语言,具有以下
- 利用R语言irr包计算ICC值(组内相关系数)
mlhylzqwxli
r语言
ICC值是一个较为陌生的概念,在统计学中应用较多,引用百度百科的介绍:组内相关系数(ICC)是衡量和评价观察者间信度(inter-observerreliability)和复测信度(test-retestreliability)的信度系数(reliabilitycoefficient)指标之一。它最先由Bartko于1966年用于测量和评价信度的大小。ICC等于个体的变异度除以总的变异度,故其值介
- R语言机器学习系列-随机森林回归代码解读
Mrrunsen
R语言大学作业机器学习回归r语言
回归问题指的是因变量或者被预测变量是连续性变量的情形,比如预测身高体重的具体数值是多少的情形。整个代码大致可以分为包、数据、模型、预测评估4个部分,接下来逐一解读。1、包部分,也就是加载各类包,包括随机森林包randomForest,数据相关包tidyverse、skimr、DataExplorer,模型评估包caret。2、数据部分,主要是读取数据,处理缺失值,转换变量类型。3、模型部分。为了对
- r语言手动算两个C指数p值,如何用R语言进行Pvalue显著性标记?
蒲牢森
r语言手动算两个C指数p值
作者:一只想飞的喵审稿:童蒙编辑:angelica箱线图是统计学中较常见的图形之一。这篇文章将讲述如何简单比较两组或多组的平均值,且添加显著性标记。通常情况根据显著性p值的数值大小,分为四类:(1)0.01≤p<0.05,*(2)0.001≤p<0.01,**(3)0.0001≤p<0.001,***(4)p<0.0001,****接下来会讲述三种添加显著性标记的方法。方法1-手动添加1:创建数据
- 使用geom_bracket函数为指定水平箱图之间添加假设检验名称以及显著性水平p值(R语言)
认真写代码i
r语言开发语言R语言
使用geom_bracket函数为指定水平箱图之间添加假设检验名称以及显著性水平p值(R语言)在R语言中,我们经常使用箱图(boxplot)来可视化数据的分布和比较不同组之间的差异。当我们进行假设检验时,除了展示箱图之间的差异,还需要在图形上添加假设检验的名称和显著性水平p值,以便更清晰地表达结果。在本文中,我们将介绍如何使用ggplot2包中的geom_bracket函数为指定水平箱图之间添加假
- R语言绘图:韦恩图
善木科研
R语言r语言生信分析生物信息数据分析
韦恩分析韦恩分析(VennAnalysis)常用于可视化不同数据集之间的交集和并集。维恩图(Venndiagram),也叫文氏图、温氏图、韦恩图、范氏图,用于显示元素集合重叠区域的关系型图表,通过图形与图形之间的层叠关系,来反应数据集之间的相交关系。在R语言中,进行韦恩分析(Venn图绘制)可以通过多个不同的包来实现,常用的包括VennDiagram、venn和ggVenn等。本文案使用ggVen
- 在R语言中,要在图形中添加组间p值,可以使用`geom_bracket`函数
ByteWhisper
r语言python开发语言R语言
在R语言中,要在图形中添加组间p值,可以使用geom_bracket函数。geom_bracket函数可以用来创建一个带有括号标记的图形,用于表示组间的显著性差异。本文将详细介绍如何使用geom_bracket函数来添加组间p值,并提供相应的源代码示例。首先,我们需要安装并加载ggplot2包,因为geom_bracket函数是ggplot2包中的一部分。可以使用以下代码安装和加载ggplot2包
- R语言使用fs包的file_copy函数、dir_copy函数、link_copy函数将文件、目录、超链接从一个位置拷贝(copy)到另一个位置
statistics.insight
R语言入门课r语言数据挖掘机器学习开发语言
R语言使用fs包的file_copy函数、dir_copy函数、link_copy函数将文件、目录、超链接从一个位置拷贝(copy)到另一个位置目录R语言使用fs包的file_copy函数、dir_copy函数、link_copy函数将文件、目录、超链接从一个位置拷贝(copy)到另一个位置#包和库的安装、导入#R语言使用fs包的dir_ls函数列出指定文件夹下面的所有文件和文件夹(listfil
- R语言使用table1包绘制(生成)三线表实战:单变量分列构建三线表、使用render参数设置显示的统计量以及换行方式、使用topclass参数自定义设置显示网络和居中对齐
statistics.insight
R语言入门课r语言开发语言数据挖掘机器学习
R语言使用table1包绘制(生成)三线表实战:单变量分列构建三线表、使用render参数设置显示的统计量以及换行方式、使用topclass参数自定义设置显示网络和居中对齐目录R语言使用table1包绘制(生成)三线表、使用单变量分列构建三线表、使用render参数设置显示的统计量以及换行方式、使用topclass参数自定义设置显示网络和居中对齐#三线表是什么?#导入包并构建仿真数据#R语言使用t
- R语言广义加性模型:使用广义线性加性模型GAMs构建logistic回归
TechInk
r语言回归开发语言R语言
R语言广义加性模型:使用广义线性加性模型GAMs构建logistic回归在数据分析和建模领域,广义加性模型(GeneralizedAdditiveModels,简称GAMs)是一种常用的非参数统计方法。它结合了广义线性模型(GeneralizedLinearModels,简称GLMs)的灵活性和非线性关系的建模能力,可以适用于各种类型的响应变量,包括二元回归(logistic回归)。本文将介绍如何
- R语言广义加型模型(GAM)的运用例子及实现教程
Mrrunsen
R语言大学作业r语言开发语言
文章目录步骤1:加载所需包和数据步骤2:数据预处理步骤3:拟合广义加型模型步骤4:查看模型摘要和诊断模型摘要系数估计平滑项模型质量步骤5:预测和可视化结论广义加型模型(GeneralizedAdditiveModel,简称GAM)是一种灵活的非线性建模方法,在统计学和机器学习领域被广泛应用。GAM可以用于拟合非线性关系,适用于多个预测变量之间的复杂关系,并且可以处理连续和分类变量。本教程将向您展示
- 数据清洗与统计分析原理与代码实战案例讲解
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《数据清洗与统计分析原理与代码实战案例讲解》关键词:数据清洗、统计分析、Python、R语言、数据预处理、数据分析、机器学习、大数据摘要:本文将深入探讨数据清洗与统计分析的原理,并通过丰富的实战案例展示如何在实际项目中应用这些技术。我们将详细讲解数据清洗的基本概念、流程和方法,以及统计分析的各种技术和应用。通过本文的学习,您将掌握数据清洗与统计分析的核心技能,提升数据处理和分析的能力,为后续的数据
- 2小时学懂【多元统计分析】——聚类分析(R语言)
木小鹿
多元统计R语言代码机器学习算法人工智能开发语言数据挖掘数据分析
聚类分析是一种无监督学习方法,用于将相似的观测值(或对象)分组到集群中。下面我将展示如何使用几种常见的聚类方法:K-均值(K-means)、层次聚类(HierarchicalClustering)和DBSCAN。1.K-均值聚类(K-meansClustering)K-均值是一种迭代的聚类算法,它将数据划分为K个预定义的集群。#加载需要的包library(cluster)#假设我们有一些二维数据s
- 【数据分析】R语言的广义线性混合模型(GLMM)分析案例
生信学习者1
数据分析数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤加载R包数据下载导入数据数据预处理成对相关性GLMMs标准化数据字符向量转换成因子化变量构建模型FishesAmphibiansReptilesBirdsMammals画图总结系统信息介绍广义线性混合模型(GeneralizedLinearMixedModels,GLMM)是一种统计模型,用于分析具有非
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,