原创:hxj7
本文介绍了如何用Baum-Welch算法来估算HMM模型中的概率参数。
前文《序列比对(15)EM算法以及Baum-Welch算法的推导》介绍了EM算法
和Baum-Welch算法
的推导过程。Baum-Welch算法是EM算法的一个特例,用来估算HMM模型中的概率参数。其具体步骤如下:
本文给出了Baum-Welch算法的C代码,还是以投骰子为例,估算出了转移概率以及发射概率。
具体效果如图:
(下面几张图中的 Real
表示真实的转移概率以及发射概率,而Baum-Welch
表示用Baum-Welch算法估算的转移概率以及发射概率。)
首先是当若干条序列总长度为300时:
然后是当若干条序列总长度为30000时:
可以看出总长度为30000时已经很接近真实值了。但是,Baum-Welch算法的结果时一个局部最优值,很依赖初始值的设定。所以,当初始值不同时,也有可能会出现这种结果:
小结一下:
其中的 A k l A_{kl} Akl指的是 a k l a_{kl} akl在所有训练序列中出现的期望次数,而 E k ( b ) E_k(b) Ek(b)指的是 e k ( b ) e_k(b) ek(b)在所有训练序列中出现的期望次数。用符号表示就是(其中 x j x^j xj表示第j条符号序列):
(1.1) A k l = ∑ j ∑ π P ( π j ∣ x j , θ ) A k l ( π j ) = ∑ j ∑ i P ( π i j = k , π i + 1 j = l ∣ x j , θ ) \begin{aligned} \displaystyle A_{kl} & = \sum_{j} \sum_{\pi} P(\pi^j|x^j,\theta) A_{kl}(\pi^j) \\ & = \sum_{j} \sum_i P(\pi_i^j=k, \pi_{i+1}^j=l|x^j,\theta) \tag{1.1} \end{aligned} Akl=j∑π∑P(πj∣xj,θ)Akl(πj)=j∑i∑P(πij=k,πi+1j=l∣xj,θ)(1.1)
(1.2) E k ( b ) = ∑ j ∑ π P ( π j ∣ x j , θ ) E k ( b , π j ) = ∑ j ∑ i P ( π i j = k , x i j = b ∣ x j , θ ) = ∑ j ∑ { i ∣ x i j = b } P ( π i j = k ∣ x j , θ ) \begin{aligned} \displaystyle E_k(b) & = \sum_j \sum_\pi P(\pi^j|x^j, \theta) E_k(b, \pi^j) \\ & = \sum_{j} \sum_i P(\pi_i^j=k, x_i^j=b|x^j,\theta) \\ & = \sum_{j} \sum_{\{i|x_i^j=b\}} P(\pi_i^j=k|x^j,\theta) \tag{1.2} \end{aligned} Ek(b)=j∑π∑P(πj∣xj,θ)Ek(b,πj)=j∑i∑P(πij=k,xij=b∣xj,θ)=j∑{i∣xij=b}∑P(πij=k∣xj,θ)(1.2)
我们可以推导出,对某一条序列 x j x^j xj有如下结论:
(2.1) P ( π i = k , π i + 1 = l ∣ x , θ ) = f ~ k ( i ) a k l e l ( x i + 1 ) b ~ l ( i + 1 ) P(\pi_i=k, \pi_{i+1}=l|x,\theta) = \tilde{f}_k(i) a_{kl} e_l(x_{i+1}) \tilde{b}_l(i+1) \tag{2.1} P(πi=k,πi+1=l∣x,θ)=f~k(i)aklel(xi+1)b~l(i+1)(2.1)
(2.2) P ( π i = k ∣ x , θ ) = f ~ k ( i ) b ~ k ( i ) s i P(\pi_i=k|x,\theta) = \tilde{f}_k(i) \tilde{b}_k(i) s_i \tag{2.2} P(πi=k∣x,θ)=f~k(i)b~k(i)si(2.2)
其中 f ~ k ( i ) \tilde{f}_k(i) f~k(i)、 b ~ k ( i ) \tilde{b}_k(i) b~k(i) 以及 s i s_i si 的定义在前文《序列比对(12):计算后验概率》中已经给出(下文给出了计算公式)。
公式(2.1)的推导如下:
P ( π i = k , π i + 1 = l ∣ x , θ ) = P ( π i = k , π i + 1 = l , x ∣ θ ) P ( x ∣ θ ) = P ( π i = k , π i + 1 = l , x 1 , . . . , x i , x i + 1 , . . . , x L ∣ θ ) P ( x ∣ θ ) = P ( x 1 , . . . , x i , π i = k ∣ θ ) P ( x i + 1 , . . . , x L , π i + 1 = l ∣ x 1 , . . . , x i , π i = k , θ ) P ( x ∣ θ ) = f k ( i ) P ( x i + 1 , . . . , x L , π i + 1 = l ∣ x 1 , . . . , x i , π i = k , θ ) P ( x ∣ θ ) = f k ( i ) P ( x i + 1 , . . . , x L , π i + 1 = l ∣ π i = k , θ ) P ( x ∣ θ ) = f k ( i ) P ( x i + 2 , . . . , x L , π i + 1 = l ∣ x i + 1 , π i + 1 = l , π i = k , θ ) P ( x i + 1 , π i + 1 = l ∣ π i = k , θ ) P ( x ∣ θ ) = f k ( i ) P ( x i + 2 , . . . , x L , π i + 1 = l ∣ π i + 1 = l , θ ) P ( x i + 1 , π i + 1 = l ∣ π i = k , θ ) P ( x ∣ θ ) = f k ( i ) b l ( i + 1 ) P ( x i + 1 , π i + 1 = l ∣ π i = k , θ ) P ( x ∣ θ ) = f k ( i ) b l ( i + 1 ) P ( π i + 1 = l ∣ π i = k , θ ) P ( x i + 1 ∣ π i = k , π i + 1 = l , θ ) P ( x ∣ θ ) = f k ( i ) b l ( i + 1 ) a k l P ( x i + 1 ∣ π i + 1 = l , θ ) P ( x ∣ θ ) = f k ( i ) b l ( i + 1 ) a k l e l ( x i + 1 ) P ( x ∣ θ ) \begin{aligned} & P(\pi_i=k, \pi_{i+1}=l|x,\theta) \\ & = \frac {P(\pi_i=k, \pi_{i+1}=l,x|\theta)} {P(x|\theta)} \\ & = \frac {P(\pi_i=k, \pi_{i+1}=l, x_1, ..., x_i, x_{i+1},...,x_L|\theta)} {P(x|\theta)} \\ & = \frac {P(x_1,...,x_i,\pi_i=k|\theta) P(x_{i+1},...,x_L,\pi_{i+1}=l|x_1,...,x_i,\pi_i=k,\theta)} {P(x|\theta)} \\ & = \frac {f_k(i) P(x_{i+1},...,x_L,\pi_{i+1}=l|x_1,...,x_i,\pi_i=k,\theta)}{P(x|\theta)} \\ & = \frac {f_k(i) P(x_{i+1},...,x_L,\pi_{i+1}=l|\pi_i=k,\theta)}{P(x|\theta)} \\ & = \frac {f_k(i) P(x_{i+2},...,x_L,\pi_{i+1}=l|x_{i+1},\pi_{i+1}=l,\pi_i=k,\theta) P(x_{i+1},\pi_{i+1}=l|\pi_i=k,\theta)}{P(x|\theta)} \\ & = \frac {f_k(i) P(x_{i+2},...,x_L,\pi_{i+1}=l|\pi_{i+1}=l,\theta) P(x_{i+1},\pi_{i+1}=l|\pi_i=k,\theta)} {P(x|\theta)} \\ & = \frac {f_k(i) b_l(i+1) P(x_{i+1},\pi_{i+1}=l|\pi_i=k,\theta)} {P(x|\theta)} \\ & = \frac {f_k(i) b_l(i+1) P(\pi_{i+1}=l|\pi_i=k,\theta) P(x_{i+1}|\pi_i=k,\pi_{i+1}=l,\theta)} {P(x|\theta)} \\ & = \frac {f_k(i) b_l(i+1) a_{kl} P(x_{i+1}|\pi_{i+1}=l,\theta)} {P(x|\theta)} \\ & = \frac {f_k(i) b_l(i+1) a_{kl} e_l(x_{i+1})} {P(x|\theta)} \end{aligned} P(πi=k,πi+1=l∣x,θ)=P(x∣θ)P(πi=k,πi+1=l,x∣θ)=P(x∣θ)P(πi=k,πi+1=l,x1,...,xi,xi+1,...,xL∣θ)=P(x∣θ)P(x1,...,xi,πi=k∣θ)P(xi+1,...,xL,πi+1=l∣x1,...,xi,πi=k,θ)=P(x∣θ)fk(i)P(xi+1,...,xL,πi+1=l∣x1,...,xi,πi=k,θ)=P(x∣θ)fk(i)P(xi+1,...,xL,πi+1=l∣πi=k,θ)=P(x∣θ)fk(i)P(xi+2,...,xL,πi+1=l∣xi+1,πi+1=l,πi=k,θ)P(xi+1,πi+1=l∣πi=k,θ)=P(x∣θ)fk(i)P(xi+2,...,xL,πi+1=l∣πi+1=l,θ)P(xi+1,πi+1=l∣πi=k,θ)=P(x∣θ)fk(i)bl(i+1)P(xi+1,πi+1=l∣πi=k,θ)=P(x∣θ)fk(i)bl(i+1)P(πi+1=l∣πi=k,θ)P(xi+1∣πi=k,πi+1=l,θ)=P(x∣θ)fk(i)bl(i+1)aklP(xi+1∣πi+1=l,θ)=P(x∣θ)fk(i)bl(i+1)aklel(xi+1)
同时,由我们知道:
f k ( i ) = f ~ k ( i ) ∏ r = 1 i s r b k ( i ) = b ~ k ( i ) ∏ r = i L s r P ( x ) = ∏ r = 1 L s r \displaystyle f_k(i) = \tilde{f}_k(i) \prod_{r=1}^{i} s_r \\ \displaystyle b_k(i) = \tilde{b}_k(i) \prod_{r=i}^{L} s_r \\ \displaystyle P(x) = \prod_{r=1}^L s_r fk(i)=f~k(i)r=1∏isrbk(i)=b~k(i)r=i∏LsrP(x)=r=1∏Lsr
所以:
P ( π i = k , π i + 1 = l ∣ x , θ ) = f k ( i ) b l ( i + 1 ) a k l e l ( x i + 1 ) P ( x ∣ θ ) = [ f ~ k ( i ) ∏ r = 1 i s r ] [ b ~ l ( i + 1 ) ∏ r = i + 1 L s r ] a k l e l ( x i + 1 ) ∏ r = 1 L s r = f ~ k ( i ) a k l e l ( x i + 1 ) b ~ l ( i + 1 ) \begin{aligned} P( & \pi_i=k, \pi_{i+1}=l|x,\theta) \\ & = \frac {f_k(i) b_l(i+1) a_{kl} e_l(x_{i+1})} {P(x|\theta)} \\ & = \frac {\bigg[ \tilde{f}_k(i) \displaystyle \prod_{r=1}^{i} s_r \bigg] \bigg[ \tilde{b}_l(i+1) \prod_{r=i+1}^{L} s_r \bigg] a_{kl} e_l(x_{i+1})} {\displaystyle \prod_{r=1}^L s_r} \\ & = \tilde{f}_k(i) a_{kl} e_l(x_{i+1}) \tilde{b}_l(i+1) \end{aligned} P(πi=k,πi+1=l∣x,θ)=P(x∣θ)fk(i)bl(i+1)aklel(xi+1)=r=1∏Lsr[f~k(i)r=1∏isr][b~l(i+1)r=i+1∏Lsr]aklel(xi+1)=f~k(i)aklel(xi+1)b~l(i+1)
公式(2.2)的证明已经在前文《序列比对(12):计算后验概率》中给出过了。
由式子(1.1)、(1.2)、(2.1)、(2.2),我们可以得到:
(3.1) A k l = ∑ j ∑ i f ~ k j ( i ) a k l e l ( x i + 1 j ) b ~ l j ( i + 1 ) \displaystyle A_{kl} = \sum_{j} \sum_i \tilde{f}^{j}_k(i) a_{kl} e_l(x^j_{i+1}) \tilde{b}^j_l(i+1) \tag{3.1} Akl=j∑i∑f~kj(i)aklel(xi+1j)b~lj(i+1)(3.1)
(3.2) E k ( b ) = ∑ j ∑ { i ∣ x i j = b } f ~ k j ( i ) b ~ k j ( i ) s i j \displaystyle E_k(b) = \sum_{j} \sum_{\{i|x_i^j=b\}} \tilde{f}^j_k(i) \tilde{b}^j_k(i) s^j_i \tag{3.2} Ek(b)=j∑{i∣xij=b}∑f~kj(i)b~kj(i)sij(3.2)
实际上,代码中使用了状态0,构建了初始概率向量。假设以B代表初始向量的“转移”期望次数,那么它是 A k l A_{kl} Akl当k=0时的一个特例:
(3.3) B 0 l = ∑ j b ~ l j ( 1 ) a 0 l e l ( x 1 j ) \displaystyle B_{0l} = \sum_j \tilde{b}^j_l(1) a_{0l} e_l(x^j_1) \tag{3.3} B0l=j∑b~lj(1)a0lel(x1j)(3.3)
由于我们使用了伪计数 r k l r_{kl} rkl 以及 r k ( b ) r_k(b) rk(b),所以:
(4.1) A k l ′ = A k l + r k l A'_{kl} = A_{kl} + r_{kl} \tag{4.1} Akl′=Akl+rkl(4.1)
(4.2) E k ′ ( b ) = E k ( b ) + r k ( b ) E'_{k}(b) = E_{k}(b) + r_{k}(b) \tag{4.2} Ek′(b)=Ek(b)+rk(b)(4.2)
(4.3) B 0 l ′ = B 0 l + r 0 l B'_{0l} = B_{0l} + r_{0l} \tag{4.3} B0l′=B0l+r0l(4.3)
最终,我们可以估算转移概率和发射概率:
(5.1) a k l = A k l ′ ∑ l ′ A k l ′ ′ a_{kl} = \frac {A'_{kl}} {\displaystyle \sum_{l'} A'_{kl'}} \tag{5.1} akl=l′∑Akl′′Akl′(5.1)
(5.2) e k ( b ) = E k ′ ( b ) ∑ b ′ E k ′ ( b ′ ) e_k(b) = \frac {E'_k(b)} {\displaystyle \sum_{b'} E'_k(b')} \tag{5.2} ek(b)=b′∑Ek′(b′)Ek′(b)(5.2)
本文代码实际使用的计算公式就是(5.1)和(5.2)。
具体代码如下:
(本文代码利用结构体重新梳理了过程,与之前文章中的代码相比,更工整了。)
#include
#include
#include
#include
typedef char State;
typedef char Symbol;
struct MarkovChain {
double* b; // 初始概率向量
double** a;
double** e;
Symbol* symb;
State* st;
int* idx; // 每个符号向量所对应的序号
int L; // 符号向量的长度
double** fscore;
double** bscore;
double* scale;
double logScaleSum;
};
typedef struct MarkovChain* MChain;
State state[] = {'F', 'L'}; // 所有的可能状态
Symbol symbol[] = {'1', '2', '3', '4', '5', '6'}; // 所有的可能符号
double init[] = {0.9, 0.1}; // 初始状态的概率向量
double emission[][6] = { // 发射矩阵:行对应着状态,列对应着符号
1.0/6, 1.0/6, 1.0/6, 1.0/6, 1.0/6, 1.0/6,
0.1, 0.1, 0.1, 0.1, 0.1, 0.5
};
double trans[][2] = { // 转移矩阵:行和列都是状态
0.95, 0.05,
0.1, 0.9
};
const int nstate = 2;
const int nsymbol = 6;
MChain create(const int n);
int random(double* prob, const int n); // 根据一个概率向量随机生成一个0 ~ n - 1的整数
void randSeq(MChain mc);
void getSymbolIndex(MChain mc);
void forward(MChain mc);
void backward(MChain mc);
void printState(State* st, const int n);
void printSymbol(Symbol* symb, const int n);
void printMChain(MChain mc);
void destroy(MChain mc);
void toz(double* a, const int n); // 将概率数组除以其和,使得新的概率的和为1
void BaumWelch(MChain* amc, const int n);
int main(void) {
int nchain = 3;
int initLen = 80;
int step = 20;
int i;
MChain* amc;
MChain mc;
if ((amc = (MChain*) malloc(sizeof(MChain) * nchain)) == NULL) {
fputs("Error: out of space!\n", stderr);
exit(1);
}
for (i = 0; i < nchain; i++) {
mc = create(initLen + step * i);
randSeq(mc);
getSymbolIndex(mc);
//printMChain(mc);
amc[i] = mc;
}
BaumWelch(amc, nchain);
for (i = 0; i < nchain; i++)
destroy(amc[i]);
free(amc);
return 0;
}
MChain create(const int n) {
int k;
MChain mc;
if ((mc = (MChain) malloc(sizeof(struct MarkovChain))) == NULL) {
fputs("Error: out of space!\n", stderr);
exit(1);
}
mc->L = n;
if ((mc->symb = (Symbol*) malloc(sizeof(Symbol) * mc->L)) == NULL || \
(mc->st = (State*) malloc(sizeof(State) * mc->L)) == NULL || \
(mc->idx = (int*) malloc(sizeof(int) * mc->L)) == NULL || \
(mc->fscore = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(mc->bscore = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(mc->scale = (double*) malloc(sizeof(double) * mc->L)) == NULL) {
fputs("Error: out of space!\n", stderr);
exit(1);
}
for (k = 0; k < nstate; k++) {
if ((mc->fscore[k] = (double*) malloc(sizeof(double) * mc->L)) == NULL || \
(mc->bscore[k] = (double*) malloc(sizeof(double) * mc->L)) == NULL) {
fputs("Error: out of space!\n", stderr);
exit(1);
}
}
return mc;
}
int random(double* prob, const int n) {
int i;
double p = rand() / 1.0 / (RAND_MAX + 1);
for (i = 0; i < n - 1; i++) {
if (p <= prob[i])
break;
p -= prob[i];
}
return i;
}
void randSeq(MChain mc) {
int i, ls, lr;
srand((unsigned int) time(NULL));
ls = random(init, nstate);
lr = random(emission[ls], nsymbol);
mc->st[0] = state[ls];
mc->symb[0] = symbol[lr];
for (i = 1; i < mc->L; i++) {
ls = random(trans[ls], nstate);
lr = random(emission[ls], nsymbol);
mc->st[i] = state[ls];
mc->symb[i] = symbol[lr];
}
}
void getSymbolIndex(MChain mc) {
int i;
for (i = 0; i < mc->L; i++)
mc->idx[i] = mc->symb[i] - symbol[0];
}
void forward(MChain mc) {
int i, l, k, idx;
double logpx;
// 缩放因子向量初始化
for (i = 0; i < mc->L; i++)
mc->scale[i] = 0;
// 计算第0列分值
idx = mc->idx[0];
for (l = 0; l < nstate; l++) {
mc->fscore[l][0] = mc->e[l][idx] * mc->b[l];
mc->scale[0] += mc->fscore[l][0];
}
for (l = 0; l < nstate; l++)
mc->fscore[l][0] /= mc->scale[0];
// 计算从第1列开始的各列分值
for (i = 1; i < mc->L; i++) {
idx = mc->idx[i];
for (l = 0; l < nstate; l++) {
mc->fscore[l][i] = 0;
for (k = 0; k < nstate; k++) {
mc->fscore[l][i] += mc->fscore[k][i - 1] * mc->a[k][l];
}
mc->fscore[l][i] *= mc->e[l][idx];
mc->scale[i] += mc->fscore[l][i];
}
for (l = 0; l < nstate; l++)
mc->fscore[l][i] /= mc->scale[i];
}
// P(x) = product(scale)
// P(x)就是缩放因子向量所有元素的乘积
logpx = 0;
for (i = 0; i < mc->L; i++)
logpx += log(mc->scale[i]);
mc->logScaleSum = logpx;
/*
// 打印结果
printf("forward: logP(x) = %f\n", logpx);
for (l = 0; l < nstate; l++) {
for (i = 0; i < mc->L; i++)
printf("%f ", mc->fscore[l][i]);
printf("\n");
}
*/
}
void backward(MChain mc) {
int i, l, k, idx;
double tx, logpx;
// 计算最后一列分值
for (l = 0; l < nstate; l++)
mc->bscore[l][mc->L - 1] = 1 / mc->scale[mc->L - 1];
// 计算从第n - 2列开始的各列分值
for (i = mc->L - 2; i >= 0; i--) {
idx = mc->idx[i + 1];
for (k = 0; k < nstate; k++) {
mc->bscore[k][i] = 0;
for (l = 0; l < nstate; l++) {
mc->bscore[k][i] += mc->bscore[l][i + 1] * mc->a[k][l] * mc->e[l][idx];
}
}
for (l = 0; l < nstate; l++)
mc->bscore[l][i] /= mc->scale[i];
}
/*
// 计算P(x)
tx = 0;
idx = mc->idx[0];
for (l = 0; l < nstate; l++)
tx += mc->b[l] * mc->e[l][idx] * mc->bscore[l][0];
logpx = log(tx) + mc->logScaleSum;
// 打印结果
printf("backward: logP(x) = %f\n", logpx);
for (l = 0; l < nstate; l++) {
for (i = 0; i < mc->L; i++)
printf("%f ", mc->bscore[l][i]);
printf("\n");
}
*/
}
void printState(State* st, const int n) {
int i;
for (i = 0; i < n; i++)
printf("%c", st[i]);
printf("\n");
}
void printSymbol(Symbol* symb, const int n) {
int i;
for (i = 0; i < n; i++)
printf("%c", symb[i]);
printf("\n");
}
void printMChain(MChain mc) {
int k;
int ll = 60;
int nl = mc->L / ll;
int nd = mc->L % ll;
for (k = 0; k < nl; k++) {
printf("Rolls\t");
printSymbol(mc->symb + k * ll, ll);
printf("Die\t");
printState(mc->st + k * ll, ll);
printf("\n");
}
if (nd > 0) {
printf("Rolls\t");
printSymbol(mc->symb + k * ll, nd);
printf("Die\t");
printState(mc->st + k * ll, nd);
printf("\n");
}
printf("\n\n");
}
void destroy(MChain mc) {
int i;
free(mc->symb);
free(mc->st);
free(mc->idx);
free(mc->scale);
for (i = 0; i < nstate; i++) {
free(mc->fscore[i]);
free(mc->bscore[i]);
}
free(mc->fscore);
free(mc->bscore);
free(mc);
}
void toz(double* a, const int n) {
int i;
double sum;
for (i = 0, sum = 0; i < n; i++)
sum += a[i];
if (sum == 0) {
for (i = 0; i < n; i++)
a[i] = 1.0 / n;
} else {
for (i = 0; i < n; i++)
a[i] /= sum;
}
}
void BaumWelch(MChain* amc, const int n) {
int i, k, j, l;
double* b; // 初始概率向量
double** e;
double** a;
double* B;
double** A;
double** E;
double* rb; // 伪计数
double** ra;
double** re;
int maxIter = 500; // 最大迭代次数
int niter;
int totalLen; // 序列总长度
double minLogDiff = 1e-6; // 终止阈值
double loglh1, loglh2; // log likelyhood
double tmp, sum;
// 初始化空间
if ((b = (double*) malloc(sizeof(double) * nstate)) == NULL || \
(e = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(a = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(B = (double*) malloc(sizeof(double) * nstate)) == NULL || \
(A = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(E = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(rb = (double*) malloc(sizeof(double) * nstate)) == NULL || \
(ra = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
(re = (double**) malloc(sizeof(double*) * nstate)) == NULL) {
fputs("Error: out of space!\n", stderr);
exit(1);
}
for (k = 0; k < nstate; k++) {
if ((e[k] = (double*) malloc(sizeof(double) * nsymbol)) == NULL || \
(a[k] = (double*) malloc(sizeof(double) * nstate)) == NULL || \
(E[k] = (double*) malloc(sizeof(double) * nsymbol)) == NULL || \
(A[k] = (double*) malloc(sizeof(double) * nstate)) == NULL || \
(re[k] = (double*) malloc(sizeof(double) * nsymbol)) == NULL || \
(ra[k] = (double*) malloc(sizeof(double) * nstate)) == NULL) {
fputs("Error: out of space!\n", stderr);
exit(1);
}
}
// 序列总长度
for (i = 0, totalLen = 0; i < n; i++)
totalLen += amc[i]->L;
// 初始化参数值,概率使用随机数,次数使用伪计数
srand((unsigned int) time(NULL));
for (k = 0; k < nstate; k++) {
rb[k] = 0;
b[k] = rand() / (float) RAND_MAX;
}
toz(b, nstate); // 将概率向量的和转换为1
for (k = 0; k < nstate; k++) {
for (l = 0; l < nstate; l++) {
ra[k][l] = 1;
a[k][l] = rand() / (float) RAND_MAX;
}
toz(a[k], nstate);
}
for (k = 0; k < nstate; k++) {
for (i = 0; i < nsymbol; i++) {
re[k][i] = 1;
e[k][i] = rand() / (float) RAND_MAX;
}
toz(e[k], nsymbol);
}
// 开始迭代过程
for (j = 0, loglh2 = 0; j < n; j++) {
amc[j]->e = e;
amc[j]->a = a;
amc[j]->b = b;
forward(amc[j]);
backward(amc[j]);
loglh2 += amc[j]->logScaleSum;
}
loglh2 = loglh2 * 1000 / totalLen; // 用序列总长度归一化,得到每个符号的平均log-likelyhood
loglh1 = loglh2 - minLogDiff - 1;
for (niter = 0; niter < maxIter && loglh2 - loglh1 > minLogDiff; niter++) {
loglh1 = loglh2;
// 使用伪计数赋值给初始次数
for (k = 0; k < nstate; k++)
B[k] = rb[k];
for (k = 0; k < nstate; k++) {
for (l = 0; l < nstate; l++)
A[k][l] = ra[k][l];
}
for (k = 0; k < nstate; k++) {
for (i = 0; i < nsymbol; i++)
E[k][i] = re[k][i];
}
// 利用旧参数计算期望次数
for (j = 0; j < n; j++) {
for (k = 0; k < nstate; k++) {
B[k] += amc[j]->bscore[k][0] * b[k] * e[k][amc[j]->idx[0]];
}
for (k = 0; k < nstate; k++)
for (l = 0; l < nstate; l++)
for (i = 0; i < amc[j]->L - 1; i++)
A[k][l] += amc[j]->fscore[k][i] * amc[j]->bscore[l][i + 1] * a[k][l] * e[l][amc[j]->idx[i + 1]];
for (k = 0; k < nstate; k++)
for (i = 0; i < amc[j]->L; i++)
E[k][amc[j]->idx[i]] += amc[j]->fscore[k][i] * amc[j]->bscore[k][i] * amc[j]->scale[i];
}
// 利用期望次数计算新参数
for (k = 0, sum = 0; k < nstate; k++)
sum += B[k];
for (k = 0; k < nstate; k++)
b[k] = B[k] / sum;
for (k = 0; k < nstate; k++) {
for (l = 0, sum = 0; l < nstate; l++)
sum += A[k][l];
for (l = 0; l < nstate; l++)
a[k][l] = A[k][l] / sum;
}
for (k = 0; k < nstate; k++) {
for (i = 0, sum = 0; i < nsymbol; i++)
sum += E[k][i];
for (i = 0; i < nsymbol; i++)
e[k][i] = E[k][i] / sum;
}
// 计算新的log-likelyhood
for (j = 0, loglh2 = 0; j < n; j++) {
amc[j]->e = e;
amc[j]->a = a;
amc[j]->b = b;
forward(amc[j]);
backward(amc[j]);
loglh2 += amc[j]->logScaleSum;
}
loglh2 = loglh2 * 1000 / totalLen;
}
// 输出结果
printf("num_of_seq = %d\n", n);
printf("total_seq_len = %d\n", totalLen);
printf("max_iter_num = %d\n", maxIter);
printf("num_of_iter = %d\n", niter);
printf("min_log_diff = %f\n", minLogDiff);
printf("final_log_diff = %f\n", loglh2 - loglh1);
printf("\n");
printf("Real trans:\n");
for (k = 0; k < nstate; k++) {
printf(" ");
for (l = 0; l < nstate; l++)
printf("%f ", trans[k][l]);
printf("\n");
}
printf("Baum-Welch trans:\n");
for (k = 0; k < nstate; k++) {
printf(" ");
for (l = 0; l < nstate; l++)
printf("%f ", a[k][l]);
printf("\n");
}
printf("\n");
printf("Real emission:\n");
for (k = 0; k < nstate; k++) {
printf(" ");
for (i = 0; i < nsymbol; i++)
printf("%f ", emission[k][i]);
printf("\n");
}
printf("Baum-Welch emission:\n");
for (k = 0; k < nstate; k++) {
printf(" ");
for (i = 0; i < nsymbol; i++)
printf("%f ", e[k][i]);
printf("\n");
}
printf("\n");
// 释放空间
free(b);
free(B);
free(rb);
for (k = 0; k < nstate; k++) {
free(ra[k]);
free(re[k]);
free(A[k]);
free(E[k]);
free(a[k]);
free(e[k]);
}
free(ra);
free(re);
free(A);
free(E);
free(a);
free(e);
}
(公众号:生信了)