糖果
题目背景:
bzoj2330
分析:差分约束,本题还是比较好想的直接根据题意建边就好,一下分析各个操作:
1:a = b è a >= b && b >= a è a >= b + 0, b >= a + 0 è add_edge a to b, dis = 0, add_edge b to a, dis = 0;
2: b > a è b >= a + 1 è add_edge a to b, dis = 1;
3: a >= b è a >= b + 0 è add_edge b to a, dis = 0;
4: a > b è a >= b + 1 è add_edge b to a, dis = 1;
5: b >= a è b >= a + 0 è add_edge a to b, dis = 0;
之后,因为每一个点一定大于等于1,所以建立起点S,add_edge S to i(1 <= i <= n), dis = 1,然后S = 0,从S开始用spfa跑最长路,各个点的距离即为最少需要的糖果,如果判断存在正环,则表示不能满足,输出-1,否则sum_dis为答案。
Source:
/*
created by scarlyw
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
inline char read() {
static const int IN_LEN = 1024 * 1024;
static char buf[IN_LEN], *s, *t;
if (s == t) {
t = (s = buf) + fread(buf, 1, IN_LEN, stdin);
if (s == t) return -1;
}
return *s++;
}
///*
template
inline void R(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return ;
if (c == '-') iosig = true;
}
for (x = 0; isdigit(c); c = read())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int OUT_LEN = 1024 * 1024;
char obuf[OUT_LEN], *oh = obuf;
inline void write_char(char c) {
if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf;
*oh++ = c;
}
template
inline void W(T x) {
static int buf[30], cnt;
if (x == 0) write_char('0');
else {
if (x < 0) write_char('-'), x = -x;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48;
while (cnt) write_char(buf[cnt--]);
}
}
inline void flush() {
fwrite(obuf, 1, oh - obuf, stdout);
}
/*
template
inline void R(T &x) {
static char c;
static bool iosig;
for (c = getchar(), iosig = false; !isdigit(c); c = getchar())
if (c == '-') iosig = true;
for (x = 0; isdigit(c); c = getchar())
x = ((x << 2) + x << 1) + (c ^ '0');
if (iosig) x = -x;
}
//*/
const int MAXN = 100000 + 10;
const long long INF = 1e17;
int n, m, x, a, b;
long long dis[MAXN];
int cnt[MAXN];
bool vis[MAXN];
struct node {
int to, w;
node(int to = 0, int w = 0) : to(to), w(w) {}
} ;
std::vector edge[MAXN];
inline void add_edge(int x, int y, int z) {
edge[x].push_back(node(y, z));
}
inline void read_in() {
R(n), R(m);
for (int i = 1; i <= m; ++i) {
R(x), R(a), R(b);
switch (x) {
case 1 : add_edge(a, b, 0), add_edge(b, a, 0);
break ;
case 2 : add_edge(a, b, 1);
break ;
case 3 : add_edge(b, a, 0);
break ;
case 4 : add_edge(b, a, 1);
break ;
case 5 : add_edge(a, b, 0);
break ;
}
}
for (int i = n; i >= 1; --i) add_edge(0, i, 1);
}
inline void spfa(int s) {
static std::queue q;
for (int i = 1; i <= n; ++i) dis[i] = -INF;
dis[s] = 0, q.push(s), vis[s] = true, cnt[s]++;
while (!q.empty()) {
int cur = q.front();
q.pop(), vis[cur] = false;
for (int p = edge[cur].size() - 1; p >= 0; --p) {
node *e = &edge[cur][p];
if (dis[e->to] < dis[cur] + e->w) {
dis[e->to] = dis[cur] + e->w;
if (!vis[e->to]) {
vis[e->to] = true, q.push(e->to), cnt[e->to]++;
if (cnt[e->to] == n + 1) std::cout << "-1", exit(0);
}
}
}
}
long long sum = 0;
for (int i = 1; i <= n; ++i) sum += dis[i];
std::cout << sum;
}
int main() {
read_in();
spfa(0);
return 0;
}