PyTorch多个GPU(Data Parallelism)并行与单个GPU的使用

1.划重点 

 

  • 模型放到一个GPU上运行
    model.gpu()
  • tensor = my_tensor.gpu()
  • 模型放在多个GPU上运行
    上文中的model.gpu()默认只使用一个GPU,如果你有多个GPU的话,model = nn.DataParallel(model)

注意 DataParallel并行计算只存在在前向传播

2.有例子

下面通过一个线性回归的例子来说明;一个输出通过线性变换得到一个结果

#包的导入
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader

# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100


#创建类,获取随机数
class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, 100),
                         batch_size=batch_size, shuffle=True)



#构建线性网络,仅用前向传播,注
class Model(nn.Module):
    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("  In Model: input size", input.size(),
              "output size", output.size())

        return output


模型实例化和数据并行


首先,我们要多模型进行实例化然后检查是不是有多个GPUs,如果是的话就要先用nn.DataParallel语句,然后就可以调用model.gpu()将模型放到GPUs上面。如果只有一个GPU那就直接调用model.gpu()就可以了。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)

if torch.cuda.is_available():
   model.cuda()
运行程序(GPU 仅有一个,2080Ti)
for data in rand_loader:
    if torch.cuda.is_available():
        input_var = Variable(data.cuda())
    else:
        input_var = Variable(data)

    output = model(input_var)
    print("Outside: input size", input_var.size(),
          "output_size", output.size())


运行结果:
 In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
  In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
  In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
  In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])


 

你可能感兴趣的:(深度学习,python,深度学习)