- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 书籍-《概率论I:随机变量与分布》
概率人工智能
书籍:ProbabilityTheoryI:RandomVariablesandDistributions作者:AndreaPascucci出版:Springer编辑:陈萍萍的公主@一点人工一点智能书籍下载-《概率论I:随机变量与分布》01书籍介绍本书提供了概率论简洁而严谨的介绍。在处理这一主题的各种方法中,选择了基于测度理论的最现代方法:尽管这种方法需要更高的数学抽象和精密度,但对于更高级话题如
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 2025最新最全AI大模型系统学习路线
大模型老炮
人工智能学习大模型知识图谱大模型入门AI大模型大模型学习
随着技术的进步,大模型如OpenAI的GPT-4和Sora、Google的BERT和Gemini等已经展现出了惊人的能力-从理解和生成自然语言到创造逼真的图像及视频。所以掌握大模型的知识和技能变得越来越重要。下面是学习大模型的一些建议,供大家参考。必备基础知识**数学基础:**深入理解线性代数、概率论和统计学、微积分等基础数学知识。**编程基础:**熟练掌握至少一种编程语言,推荐Python,因为
- 2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行
程序员辣条
学习大模型学习AI产品经理人工智能LLama大模型大模型教程
2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行:一、基础准备阶段数学基础:学习线性代数、微积分、概率论与数理统计等基础知识。这些数学基础对于理解大模型的原理和算法至关重要。编程语言:熟练掌握Python编程,这是大模型开发的首选语言。同时,了解常用的深度学习框架,如TensorFlow和PyTorch。深度学习基础:学习深度学习的基本原理和常用算法,
- 二项分布:成功与失败概率的交织呈现
进一步有进一步的欢喜
二项分布几何分布伯努利分布概率论深度学习
引言在概率论与数理统计的庞大体系中,二项分布占据着举足轻重的地位。它作为一种离散型概率分布,广泛应用于众多领域,从自然科学到社会科学,从工业生产到日常生活,都能看到它的身影。深入探究二项分布,不仅有助于我们理解随机现象背后的数学原理,还能为解决实际问题提供强大的工具。而回顾其发展历程,能让我们更全面地把握这一概念的来龙去脉。同时,了解二项分布与其他相关概念,如几何分布、二项式定理的联系,将进一步加
- 超实用的Python机器学习教程 - 基于scikit - learn库
AI_DL_CODE
人工智能python机器学习人工智能
一、机器学习简介机器学习的定义与概念机器学习是一门多领域交叉学科,它涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单来说,机器学习是让计算机从数据中学习规律并进行预测或决策的技术。它旨在构建能够自动从数据中学习模式并进行改进的算法,而无需被明确编程来执行特定任务。例如,我们可以让机器学习算法通过分析大量的历史天气数据来预测未来的天气情况,或者通过分析用户的购物历史来推荐可能感兴趣
- 神经网络|(七)概率论基础知识-贝叶斯公式
西猫雷婶
概率论人工智能概率论
【1】引言前序我们已经了解了一些基础知识。古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)全概率公式:全概率公式综合了所有条
- 机器学习入门——机器学习基本概念
四月是你的
机器学习
@机器学习什么是机器学习机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎简单来说机器学习就是机
- 统计学中的样本&概率论中的样本
phoenix@Capricornus
模式识别中的数学问题概率论
不知道当初谁想的把概率论和数理统计合并,作为一门课。这本身是可以合并,完整的一条线,看这里。但是,作为任课老师应该从整体上交代清楚,毕竟是两个学科,不同的学科合并必然会有各种不协调的问题。举个最基本的名词冲突的例子。统计学中的样本在统计学中,样本是从总体(Population)中选取的一部分个体或观测值。它用来代表整个总体,并用于估计总体的特征或参数。例如,如果我们想了解一个城市居民的平均收入,我
- P3978 [TJOI2015] 概率论
洛谷之蒟蒻
概率论
题目描述为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?判断两棵树是否同构的伪代码如下:算法1Check(T1,T2)Require:两棵树的节点ifT1=nullorT2=nullthenreturnT1=nullandT2=nullelsereturnCheck(T1→le
- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- 【AI中数学-概率论-综合实例-包括python实现】 预测的守望者:动态贝叶斯网络在风险预警中的应用
云博士的AI课堂
AI中的数学人工智能概率论python贝叶斯网络机器学习AI数学
第四章:概率论-综合实例第2节预测的守望者:动态贝叶斯网络在风险预警中的应用在许多现实世界的应用中,预测和风险评估通常不仅依赖于静态的输入数据,而是需要考虑时间维度和动态变化。动态贝叶斯网络(DBN,DynamicBayesianNetwork)作为一种扩展了传统贝叶斯网络的工具,可以有效地处理时间序列数据,并进行时序预测。与静态贝叶斯网络不同,DBN能够通过建模系统状态随时间的变化,揭示出更为复
- 数学:机器学习的理论基石
每天五分钟玩转人工智能
机器学习人工智能
一、数学:机器学习的理论基石机器学习是一种通过数据学习模式和规律的科学。其核心目标是从数据中提取有用的信息,以便对未知数据进行预测和分类。为了实现这一目标,机器学习需要一种数学框架来描述和解决问题。数学在机器学习中起着至关重要的作用,它提供了一种数学模型来描述数据和模式,以及一种数学方法来优化模型。数学在机器学习中的应用非常广泛,涵盖了线性代数、概率论、统计学、微积分、优化等多个领域。这些数学方法
- Python字典详解
2401_89224765
python开发语言
print(dict4)需要注意的是:fromkeys方法只用来创建新字典,不负责保存。当通过一个字典来调用fromkeys方法时,如果需要后续使用一定记得给他复制给其他的变量。②访问字典:第一阶段:基操勿6!如果要想获取字典中某个键的值,可以通过访问键的方式来显示对应的值。上代码:dict={‘线代’:“99”,“数据分析”:“99”,“概率论”:“98”}#创建字典print(‘小红同学的线代
- 【概率论与数理统计】第三章 多维随机变量及其分布(3)
Arthur古德曼
概率论与数理统计概率论多维随机变量二维随机变量独立性概率分布夏明亮
2随机变量的独立性2.1两个随机变量的独立性在多维随机变量中各分量的取值有时会互相影响,但有时也会毫无影响。例如,一个人的身高XXX和体重YYY之间就会互相影响,但与收入ZZZ一般就没什么影响。这里,我们根据两个事件的独立性引出两个随机变量的独立性:之前我们这样描述:事件{X≤x}\{X\lex\}{X≤x}与事件{Y≤y}\{Y\ley\}{Y≤y}的积事件{X≤x,Y≤y}\{X\lex,\Y
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 日记2021-3-8
思考z
今天开课第一天,对于今天的目标完成的还不错早上起床赖了一下,下午去图书馆呆了2个多小时,晚自习看了概率论与统计学,单词:talent天赋,才能,thick厚的,obstacleto对……障碍,introduce介绍,传入,thin瘦的,稀薄的,thorough彻底的,完全的,occurredto想到,invent发明,throat喉咙,ofcourse当然,thunder雷,雷声,tide潮汐,o
- PDF和CDF
薛定谔的猫_大雪
概率论
在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:ProbabilityDensityFunction(PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDFf(x)定义为在某个取值x处的概率密度,即X在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。CumulativeDensityFunct
- Python 数学建模——方差分析
Desire.984
Python数学建模数学建模python概率论
文章目录前言单因素方差分析原理核心代码双因素方差分析数学模型分析依据典型代码前言 方差分析也是概率论中非常重要的内容,有时数学建模需要用到。方差分析是干什么的?如果说假设检验用于分析两个总体之间的均值μ1,μ2\mu_1,\mu_2μ1,μ2是否存在显著的差别,那么方差分析就是分析两个以上总体之间的均值是否存在显著的差别。单因素方差分析用途:已知一个量AAA可能会影响XXX,AAA的不同取值可能
- 数据分析面试【概率论与统计学】总结之-----统计学常见面试题整理
天阑的芋头
#数据分析—统计学知识数据分析统计学数据分析面试
阅读之前看这里:博主是正在学习数据分析的一员,博客记录的是在学习过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。目录1.用简洁的话语阐述随机变量的含义2.划分连续型随机变量和离散型随机变量的依据3.常见的分布函数/概率密度函数,以
- 感悟文是很容易写的
林天歌
生活感悟是很容易写的,只要你生活中稍稍关注一下周围在发生什么,随便什么事情都可以,甚至编一件事都可以,然后为之赋予一个意义。举例子的话,比如说我可以写我的概率论老师,每节课三小时,两小时都是在讲课堂无关的事情,都是在讲一些她以为的人生道理,却不知道因为她讲得太多,加上她使用互联网的能力不足,她讲得已经完全不能触动到学生的神经,反倒还促进了一些学生的逃课。这就是典型的以己度人,她以为她在分享自己认为
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。