- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 基于深度学习的动态对抗策略
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的动态对抗策略是为了应对不断变化的对抗环境而提出的一类方法,这些策略能够动态地调整和优化模型的防御机制,以提高深度学习模型在各种对抗攻击下的鲁棒性和安全性。这类策略结合了对抗样本生成、模型防御和自适应学习的技术,形成了一种具有持续学习和适应能力的对抗防御框架。1.动态对抗策略的核心思想动态对抗策略的核心在于能够根据当前的攻击方式和环境变化实时调整模型的防御措施,以更有效地抵御对抗样本攻
- [当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
当人工智能遇上安全人工智能实体识别BiGRU威胁情报Python
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 对抗样本之FGSM原理&实战
liuyishou
目录1、FGSM原理2、pytorch实现2.1建立模型2.2FGSM模块2.3测试2.4可视化对比2.5对比样本与对抗样本1、FGSM原理论文Explainingandharnessingadversarialexamples.这篇论文由Goodfellow等人发表在ICLR2015会议上,是对抗样本生成领域的经典论文。FGSM(fastgradientsignmethod)是一种基于梯度生成对
- FGSM方法生成交通信号牌的对抗图像样本
Rnan-prince
网络安全python人工智能
背景:生成对抗样本,即扰动图像,让原本是“停车”的信号牌识别为“禁止驶入”实验准备模型:找一个训练好的,识别交通信号牌的CNN模型,灰度图像模型地址:GitHub-Daulettulegenov/TSR_CNN:Trafficsignrecognition数据:ChineseTrafficSignDatabase(CTSDB)当下最受欢迎的国内交通标志数据集之一,该数据集容纳6164个交通标志图像
- 【论文阅读】深度学习中的后门攻击综述
ADSecT吴中生
IT技术论文阅读深度学习人工智能网络安全机器学习
深度学习中的后门攻击综述1.深度学习模型三种攻击范式1.1.对抗样本攻击1.2.数据投毒攻击1.3.后门攻击2.后门攻击特点3.常用术语和标记4.常用评估指标5.攻击设置5.1.触发器5.1.1.触发器属性5.1.2.触发器类型5.1.3.攻击类型5.2.目标类别5.3.训练方式1.深度学习模型三种攻击范式后门攻击是一种隐秘而具有挑战性的网络安全威胁,它指的是攻击者利用漏洞或特殊访问权限,在系统中
- AI安全综述
captain_hwz
security人工智能安全
1、引言AI安全这个话题,通常会引伸出来图像识别领域的对抗样本攻击。下面这张把“熊猫”变“猴子”的攻击样例应该都不陌生,包括很多照片/视频过人脸的演示也很多。对抗样本的研究领域已经具备了一定的成熟性,有一系列的理论来论述对抗样本的存在必然性等特征。从另一角度,也可以看成是通过对抗样本来研究模型的运算机理。但AI应用更成熟的搜广推等领域,就很少看到相关研究。我认为其原因在于,缺乏足够的攻击场景支撑。
- 【新论文】【模型攻击】DiffAttack 针对基于扩散的对抗性净化的逃避攻击
prinTao
人工智能
DiffAttack:EvasionAttacksAgainstDiffusion-BasedAdversarialPurification作者:MintongKang;DawnSong;BoLi链接:http://arxiv.org/pdf/2311.16124v1备注:AcceptedtoNeurIPS2023摘要:基于扩散的净化防御利用扩散模型去除对抗样本的精心设计的扰动,从而实现最先进的鲁
- 物理世界中的等距3D对抗样本
凌峰的博客
3d
论文题目:Isometric3DAdversarialExamplesinthePhysicalWorld会议:NIPS2022点云:点云——表达目标空间分布和目标表面特性的海量点集合,点包含xyz坐标信息能够包含颜色等其他信息使用顶点、边和面的数据表征的三维图形的表面,顶点包含坐标信息,面片常用顶点编号来表示,同时可以附加纹理颜色等信息点云和mesh是常用的3D表示数据、获取容易(使用RGBD相
- 2022BCS——AI安全论坛
TARO_ZERO
论坛讲座人工智能安全
AI安全研究发现AI安全研究主要集中于:模型鲁棒性(对抗样本攻击)、机密性(成员推理攻击)、完整性(模型后门攻击)e.g.人脸识别身份认证协议的安全威胁:传输过程、感知器件、终端系统、宿主软件、业务代码、识别模型联邦学习:面向端侧隐私保护的分布式学习模式,每个节点只需要提供梯度,广泛应用于开放环境中,同样也存在终端节点更易被恶意控制的威胁安全问题:梯度投毒、梯度泄密自动驾驶系统:多感知模块协同的智
- 常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)
ADSecT吴中生
IT技术人工智能安全机器学习深度学习网络安全
文章目录数据投毒(DataPoisoning)后门攻击(BackdoorAttacks)对抗样本攻击(AdversarialExamples)模型窃取攻击(ModelExtractionAttacks)参考资料数据投毒(DataPoisoning)数据投毒是一种通过在训练数据中植入恶意样本或修改数据以欺骗机器学习模型的方法。这种攻击旨在使模型在未来的预测或决策中产生错误结果。攻击者可能会植入具有误
- 对抗攻击经典论文——FGSM学习笔记 EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
亦清尘
#深度学习对抗攻击机器学习神经网络算法机器学习深度学习
论文下载:ExplainingandHarnessingAdversarialExamples1摘要几种机器学习模型,包括神经网络,一致地将对抗样本误分类——通过对数据集样本添加细微而刻意的扰动形成的输入,会导致模型以较高的置信度输出错误的结果。早期尝试解释这种现象时会专注于非线性和过拟合。但我们认为,造成神经网络在面对对抗扰动时的脆弱性的主要原因正是它们的线性特性。这种解释得到了新的定量结果的支
- 使用pgd和fgsm方法进行攻击并使用map方法评估
yjjjj11
深度学习目标检测神经网络
本次实验对100张飞机图片组成的数据集,分别使用pgd攻击和fgsm攻击,达到对每张图片飞机区域的攻击,并使用getmap程序对攻击的效果进行评估。文章目录1、运行1.py程序和auto.py程序对飞机数据集的所有图片进行获取掩码操作(1)1.py程序(2)auto.py程序(3)运行后得到自动生成的掩码图像2、使用pgd对数据集生成对抗样本3、使用fgsm方法生成对抗样本4、使用map方法进行评
- 对抗样本机器学习_cleverhans_FGSM/JSMA
weixin_34400525
人工智能数据结构与算法
对抗样本机器学习_Note1_机器学习转载自:https://yq.aliyun.com/ziliao/292780机器学习方法,如SVM,神经网络等,虽然在如图像分类等问题上已经outperform人类对同类问题的处理能力,但是也有其固有的缺陷,即我们的训练集喂的都是naturalinput,因此在正常情况下处理的比较好。然而如果我们想要对ML模型进行攻击的话,可以通过一定的手段生成对抗样本(a
- [当人工智能遇上安全] 10.威胁情报实体识别 (1)基于BiLSTM-CRF的实体识别万字详解
Eastmount
当人工智能遇上安全人工智能网络安全威胁情报实体识别深度学习
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 通用对抗扰动——Universal adversarial perturbations
Jhouery
深度学习
Universaladversarialperturbations来自CVPR2017的一篇论文。引用量也上千了。https://openaccess.thecvf.com/content_cvpr_2017/html/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.html概述对抗样本,众所周知,其目的就是
- JMSA(Jacobian Saliency Map Attack)算法源码解析
Sankkl1
AI安全算法python神经网络
论文链接:https://arxiv.org/abs/1511.07528v1源码出处:https://github.com/Harry24k/adversarial-attacks-pytorch/tree/master解析FGSM、PGD等算法生成的对抗样本的扰动方向都是损失函数的梯度方向(可以参考本人以前的博客),该论文生成的对抗样本的扰动方向是目标类别标记的预测值的梯度方向,作者将这个梯度
- [论文] Feature Squeezing:Detecting Adversarial Examples in Deep Neural Networks
tizzyt95
AI安全深度学习机器学习人工智能
思路:对抗样本经过featuresqueeze处理后大部分增加的干扰会被消除或者减小,致使featuresqueeze前后的分类结果向量(distributedvector)L1距离很大,这与正常样本经过featuresqueeze后结果相反,基于这样的规律进行对抗样本的过滤。使用的攻击手段:1.L0攻击:CW0,JSMA2.L2攻击:CW23.L正无穷:FGSM、BIM、CW正无穷squeeze
- Explaining and harnessing adversarial examples
今我来思雨霏霏_JYF
对抗性攻击人工智能深度学习机器学习
Explainingandharnessingadversarialexamples----《解释和利用对抗样本》背景:早期的研究工作认为神经网络容易受到对抗样本误导是由于其非线性特征和过拟合。创新点:该论文作者认为神经网络易受对抗性扰动影响的主要原因是它的线性本质,并提出了快速梯度符号法FGSM。摘要 包括神经网络在内的一些机器学习模型始终会被对抗样本误导,这些对抗样本通过注入小但故意破坏的扰
- WXK+ 分布外鲁邦 AugMax: Adversarial Composition of Random Augmentations for Robust Training
hoix
读论文深度学习机器学习
读NIPS2021论文AugMax:AdversarialCompositionofRandomAugmentationsforRobustTraining摘要数据增强是提高鲁棒性的一个简单有效之法。diversity和hardness是数据增强的两大需要考量的分支。AugMix使用多种的增强方法来加强收敛,而对抗训练通过生成困难的对抗样本来spottheweakness。由此启示,作者提出Aug
- 对抗样本生成系列:JSMA目标扰动
小生很忙
摘要:在之前的博客中介绍了三种对抗样本的生成算法,分别是FGSM、DeepFool和UniversalPerturbation。这三种算法生成的对抗样本样本有一个共同的特点:其对抗性样例没有具体的目标,即我们无法控制目标模型对对抗性样例的分类结果。举例来说,如果我们构建了一个识别小动物的分类模型,现在我们需要对一张狗的照片生成其对抗性样例。先前的算法生成的对抗性样例只能达到让分类器分类错误的目的,
- 关于对抗样本需要知道的
小菜变大菜
什么是对抗样本AdversarialExamples(对抗样本):对输入样本故意添加一些人无法察觉的细微的干扰,导致模型以高置信度给出一个错误的输出。对抗样本与对抗学习(GAN)不同。经典例子对抗性样本的存在是因为数据维度通常过高,即使考虑所在的子区域,往往还是过高,对整个(数据分布的)空间的的手术是不可行的,在训练样本没有覆盖的区域,无论该区域示范属于数据分布所在的区域,无论模型强不强,都有出现
- 对抗攻击公开课第二弹来啦,真题演练 + 代码实战
PaperWeekly
人脸识别人工智能css计算机视觉github
精选6讲针对人脸识别的AI对抗专题课,搭配实战项目演练,完成项目作业即可获得完课奖品近年来,AI安全问题愈加受到行业关注。在今年6月的智源大会上,清华大学计算机系教授、RealAI首席科学家朱军就指出,尽管人工智能技术取得长足进步,人工智能算法的安全性仍存在严重不足,对智能技术的应用带来较大的安全隐患。对抗攻击是当前AI模型安全领域的热门研究方向之一,其主要手段是生成对抗样本,影响AI模型效果从而
- 对抗样本的基本原理
七七_af9b
姓名:张安琪学号:17021211235转载自:https://www.leiphone.com/news/201806/aLeiPZA0FbVtQI6M.html,有删节。【嵌牛导读】:对抗样本是机器学习模型的一个有趣现象,攻击者通过在源数据上增加人类难以通过感官辨识到的细微改变,但是却可以让机器学习模型接受并做出错误的分类决定。【嵌牛鼻子】:机器学习对抗样本【嵌牛提问】:对抗样本的基本原理是什
- Zero-Shot Learning by Harnessing Adversarial Samples 理论 & 代码解读
computer_vision_chen
零样本学习深度学习人工智能机器学习
《Zero-ShotLearningbyHarnessingAdversarialSamples》基于对抗样本的零样本学习该论文要解决的问题:减轻了传统图像增强技术中固有的语义失真问题。我们希望我们的实验研究将有助于理解单标签监督和语义属性监督在模型行为上的差异,并为开发更强大的语义条件视觉增强铺平道路。然而,这种方法也会对ZSL产生不利影响,因为传统的增强技术仅依赖于单一标签监督,无法保留语义信
- 碎片笔记 | 大模型攻防简报
_Meilinger_
碎片笔记笔记人工智能大模型攻防大模型攻防模型攻防
前言:与传统的AI攻防(后门攻击、对抗样本、投毒攻击等)不同,如今的大模型攻防涉及以下多个方面的内容:目录一、大模型的可信问题1.1虚假内容生成1.2隐私泄露二、大模型的安全问题2.1模型窃取攻击2.2数据窃取攻击2.3Prompt提示词攻击2.4对抗样本攻击2.5后门攻击2.6数据投毒三、基于大模型的隐蔽通信四、大模型的产权问题五、大模型的伦理问题5.1意识形态5.2偏见歧视5.3政治斗争5.4
- 【IR】什么是对抗攻击 | 视觉跟踪
ca1m4n
CV攻防目标跟踪安全
现在有机会接触一下针对深度学习神经网络的对抗攻击,并做整理如下对于CV攻防,其实去年12月组会听完就浏览过相关文章面向目标检测的对抗样本综述+后门防御,NIPS2022adversarialattackfortrackingCVPR2021|IoUAttack导读方法结果相关工作CVPR2020|CSA摘要方法结果CVPR2021|IoUAttackIoUAttack:TowardsTempora
- 深度学习入门教学——对抗攻击和防御
恣睢s
深度学习深度学习人工智能
目录一、对抗样本二、对抗攻击三、对抗防御一、对抗样本对抗样本是指对机器学习模型的输入做微小的故意扰动,导致模型输出结果出现错误的样本。深度神经网络在经过大量数据训练后,可以实现非常复杂的功能。在语音识别、图像识别、自然语言处理等任务上被广泛运用。然而,研究表明一个人类无法察觉的噪声可能让机器产生错判。例如,给出一张熊猫的图片,神经网络可以正确地将它识别出来。如果我们给这张图片加入一些噪声,生成一副
- 对抗样本在NLP模型中的运用
2cd1
对抗样本方法是可以应用到NLP中的。下面转载山竹小果的文章NLP中的对抗样本自然语言处理方面的研究在近几年取得了惊人的进步,深度神经网络模型已经取代了许多传统的方法。但是,当前提出的许多自然语言处理模型并不能够反映文本的多样特征。因此,许多研究者认为应该开辟新的研究方法,特别是利用近几年较为流行的对抗样本生成和防御的相关研究方法。使用对抗样本生成和防御的自然语言处理研究可以基本概括为以下三种:1.
- 比赛规则介绍
闭门造折
赛题背景近年来,人工智能技术在视觉识别领域有飞速的发展,但与此同时,人工智能模型的安全问题却不容乐观。通过引入对抗样本,攻击者很容易就可以通过肉眼几乎观察不到的微小扰动,使模型分类失误。本次比赛希望可以让参赛选手了解和探索Cifar10上的对抗攻击场景,通过组合对抗攻击方案,实地体验不同对抗攻击算法特点。数据说明及描述比赛采用Cifar-10数据集,我们筛选了500张图像,这些图像都是32*32大
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include