- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 基础算法(一)#蓝桥杯
席万里
C/C++算法蓝桥杯c++
文章目录1、模拟1.1、DNA序列修正1.2、无尽的石头2、递归2.1、带备忘录的斐波那契数列2.2、数的计算3、进制转换3.1、进制转换模板3.2、Alice和Bob的爱恨情仇4、前缀和4.1、前缀和模板4.2、区间次方和4.3、小郑的蓝桥平衡串4.4、大石头的搬运工4.5、最大数组和4.6、四元组问题**5、差分5.1、区间更新(一维差分)5.2、肖恩的投球游戏加强版5.4、泡澡6、离散化6.
- 主席树求区间第K小模板
Stephen_Curry___
算法c++数据结构主席树
主席树(PresidentTree)是一种用于解决区间查询和修改问题的数据结构,通常用于静态区间问题(即查询和修改操作在构建结构之后不再发生变化)。主席树可以高效地处理诸如区间和、区间最值等问题。主席树的实现原理:基本思想:主席树是一种基于分治思想的数据结构,它将原始序列按照每个位置的取值范围进行离散化,然后构建出一棵持久化线段树(PersistentSegmentTree)。持久化线段树:持久化
- 【算法随笔:HDU 3333 Turing tree】(线段树 | 离线 | 离散化 | 贪心)
XNB's Not a Beginner
算法算法哈希算法leetcodec++排序算法
https://acm.hdu.edu.cn/showproblem.php?pid=3333https://acm.hdu.edu.cn/showproblem.php?pid=3333https://vjudge.net.cn/problem/HDU-3333https://vjudge.net.cn/problem/HDU-3333题目很简单,给出长度为N的数组,Q次询问,每次给出区间[x,
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 离散化【学习笔记】
Simple World.
c++算法
引入小丁:小智,你不觉得我们小区旁边的树木太多太挤了吗?小智:确实。要不我们把一些树移走?小区对面的学校旁可正缺树呢!小丁:不过我们又不能自己把树移走,得找人帮忙。小智:嗯。要不我们就在树旁边标记一下,让园林工人移植一下吧。小丁和小智开始了自己的活儿……小丁从左往右,每数120棵便标记一棵树。小智从左往右,每数422棵便标记一棵树。小智:我们最好算算需要移走多少棵树,好让园林工人校对。小丁:我怎么
- C++ 离散化 算法 (详解)+ 例题
喝可乐的布偶猫
算法学习笔记算法c++数据结构
1、性质把无限空间中有限的个体映射到有限的空间中去,以此提高算法的空间效率。通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的压缩。适用范围:数的跨度很大,用的数很稀疏例如:值域:1~10^9,个数:10^5,值域很大,但是用到个数相对很少,这个时候就可以离散化比如:将a[i]:13100200050000//这里需要注意可以离散化的前提是数组元素必须是有序的 i:01 2 3
- 机器学习-特征提取-字典特征提取-文本特征提取-TF-IDF
涓涓自然卷
一、特征提取概要:1、定义:将任意数据(如文本或图像)转换为可用于机器学习的数字特征。注:特征值化是为了计算机更好的去理解数据。2、特征提取分类:字典特征提取(特征离散化)文本特征提取图像特征提取(深度学习介绍)3、特征提取API:sklearn.feature_extraction二、字典特征提取:作用:对字典数据进行特征值化。1、API:fromsklearn.feature_extracti
- 使用动态网格的流体动画 Fluid Animation with Dynamic Meshes 论文阅读笔记
hijackedbycsdn
FluidSimulation笔记
目录引言背景方法离散化离散化的导数算子速度插值广义的半拉格朗日步重新网格化双向流固耦合和质量守恒原文:Klingner,BryanM.,etal.“Fluidanimationwithdynamicmeshes.”ACMSIGGRAPH2006Papers.2006.820-825.引言使用[Alliezetal.,2005]的方法动态生成不规则的四面体网格根据边界的位置、边界的形状、基于流体和速
- 【压缩感知基础】Nyquist采样定理
superdont
计算机视觉计算机视觉opencv人工智能python矩阵
Nyquist定理,也被称作Nyquist采样定理,是由哈里·奈奎斯特在1928年提出的,它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时,采样的要求以避免失真。数学表示Nyquist定理的核心内容可以描述如下:若要对一个带宽受限的连续信号进行采样而不引起失真,采样频率(频率的单位为Hz,指每秒采样数)必须大于信号最高频率的两倍。这个定理的数学表述为:[f_s>2f_{ma
- 牛客周赛 Round 28 F
Xing_ke309
算法数据结构
F.小红统计区间(hard)题目链接为前缀和枚举右端点看有多少个左端点满足条件,即在一个数轴上找的的个数。可以利用树状数组区间查询,查找中满足条件的前缀和。具体操作为先查找,再把自身在数轴上对应的数的个数加一。所以统计时没有统计自身对答案的影响。当前操作为第位时,则数轴上只记录了的前缀和。由于前缀和过大,形成的数轴过长,采用离散化。将所有前缀和由小到大排序并去重,构成新数轴。由于在数轴上可能没有直
- 代码源每日一题Div.1 (301~307)
xhyu61
做题笔记算法学习算法贪心算法动态规划acm竞赛深度优先
301-连续子序列题目链接简单的动态规划题目,先将所有数进行一个离散化,然后dp。dp[i]dp[i]dp[i]表示这个位置为结尾的最长符合要求的子序列的长度。对于每一个位置,找这个数对应的离散化编号的上一个数在什么位置,如果那个数目前为止还没有出现,或者那个数与这个数的差不是111,dp[i]=1dp[i]=1dp[i]=1;否则设上一个数最后一次出现在lstlstlst,那么dp[i]=dp[
- Python建模复习 :数据挖掘技术理论
啾啾二一
第二部分数据挖掘技术理论2.1数据分析方法论KDD知识发现KnowledgeDiscoveryfromDatabase:数据清理、数据集成、数据选择、数据变换(正规化、泛化、离散化)、数据挖掘、模式评估、知识表示。CRISP-DM(cross-industryprocessfordatamining):业务理解、数据理解、数据准备、建模、模型评估和模型发布。SEMMA:抽样Sample、探索Exp
- 【北邮鲁鹏老师计算机视觉课程笔记】05 Hough 霍夫变换
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】05Hough霍夫变换1投票策略考虑到外点率太高①让直线上的每一点投票②希望噪声点不要给具体的任何模型投票,即噪声点不会有一致性的答案③即使被遮挡了,也能把直线找出来参数空间离散化直线相当于就是m,b两个参数点给参数空间投票找到投票最多的参数点给参数空间投票上图,图像空间的一条直线在参数空间是一个点上图:图像空间的一个点对应参数空间的一条直线因为在图像空间确定一个
- 基础算法(排序,二分,高精度加减乘除,前缀和与差分,离散化,位运算,双指针等)介绍
赵英英俊
算法总结算法c++数据结构
基础算法文章目录基础算法排序快速排序归并排序二分算法整数二分浮点数二分高精度加减乘除高精度加法高精度减法高精度乘法高精度除法前缀和与差分一维前缀和二维前缀和一维差分二维差分双指针算法位运算离散化区间合并代码模板排序快速排序时间复杂度为nlogn级别主要思想是每次选取一个基准(一般是以中间为基准),然后从数组的头尾开始进行比较,保证基准的左边都是小于基准的数,基准的右边都是大于基准的数,然后通过同样
- Acwing算法基础1——快排 归并 二分 前缀和 差分 双指针 位运算 离散化 区间和
倩mys
数据结构与算法算法数据结构java
文章目录1、快排----分治2、归并——分治3、二分法4、高精度(C++)5、前缀和(一维、二维)6、差分(一维、二维)7、双指针算法8、位运算9、离散化10、区间和流程:1.理解思想,背模板2.刷题目3.重复3~5遍2021.9.111、快排----分治主要思想:1.确定分界点:q[l]q[(l+r)/2]q[r]随机2.调整范围:x放右边3.递归:处理左右两端难点:划分快排不稳定,如何变得稳定
- 常用代码模板1——基础算法——排序 二分 高精度 前缀和与差分 双指针算法 位运算 离散化 区间合并
結城
c++
排序二分高精度前缀和与差分双指针算法位运算离散化区间合并快速排序算法模板——模板题AcWing785.快速排序voidquick_sort(intq[],intl,intr){if(l>=r)return;inti=l-1,j=r+1,x=q[l+r>>1];while(ix);if(i=r)return;intmid=l+r>>1;merge_sort(q,l,mid);merge_sort(q
- 一、基础算法之排序、二分、高精度、前缀和与差分、双指针算法、位运算、离散化、区间合并内容。
樱花的浪漫
C++与算法题系列算法数据结构
1.快速排序算法思想:选择基准元素,比基准元素小的放左边,比基准元素大的放右边。每趟至少一个元素排好。每一趟实现步骤:low>=high,返回,排序完成选取基准元素x=a[low],i=low,j=high当iusingnamespacestd;constintN=100010;intn;intq[N];voidquick_sort(inta[],intlow,inthigh){if(low>=h
- Java蓝桥杯备考---4.算法基础(二)
不要再睡
蓝桥杯算法职场和发展
1.离散化把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率。离散化是一种将数组的值域压缩,从而更加关注元素的大小关系的算法。当原数组中的数字很大、负数、小数时(大多数情况下是数字很大),难以将“元素值”表示为“数组下标”,一些依靠下标实现的算法和数据结构无法实现时,我们就可以考虑将其离散化。例如原数组的范围是[1,le9],而数组大小仅为le5,那么说明元素值的“种类数”最多也就
- leetcode 3027. 人员站位的方案数 II【离散化前缀和+枚举】
lianxuhanshu_
基础算法leetcode算法
原题链接:3027.人员站位的方案数II题目描述:给你一个nx2的二维数组points,它表示二维平面上的一些点坐标,其中points[i]=[xi,yi]。我们定义x轴的正方向为右(x轴递增的方向),x轴的负方向为左(x轴递减的方向)。类似的,我们定义y轴的正方向为上(y轴递增的方向),y轴的负方向为下(y轴递减的方向)。你需要安排这n个人的站位,这n个人中包括liupengsay和小羊肖恩。你
- Open CASCADE学习|点和曲线的相互转化
老歌老听老掉牙
OpenCASCADE学习OpenCASCADEc++
目录1、把曲线离散成点1.1按数量离散1.2按长度离散1.3按弦高离散2、由点合成曲线2.1B样条插值2.2B样条近似1、把曲线离散成点计算机图形学中绘制曲线,无论是绘制参数曲线还是非参数曲线,都需要先将参数曲线进行离散化,通过离散化得到一组离散化的点集,然后再将点集发送给图形渲染管线进行处理,最终生成我们想要的曲线。OpenCASCADE中提供了GCPnts包。利用GCPnts包中提供的类,我们
- 数据分析之数据预处理、分析建模、可视化
诗雅颂
数据分析ai爬虫数据采集分析建模可视化
数据分析通常需要经历三个主要步骤:数据预处理、分析建模和可视化1、数据预处理:数据预处理是指在进行数据分析之前对原始数据进行清洗、转换和整理的过程。其目的是确保数据的质量和可用性,以便后续的分析能够产生准确有效的结果。以下是一些常见的数据预处理方法:a.数据清洗:去除重复、缺失或错误的数据,修正数据的格式和结构等,以提高数据的准确性。b.数据转换:对数据进行归一化、标准化、离散化等处理,使得数据更
- 智慧海洋建设-Task3 特征工程
1598903c9dd7
关于本次智慧海洋特征构建分为时间类特征、分箱特征(x、y、v)、DataFrame特征(计数特征和偏移量特征)、统计特征(聚合)、embedding特征(word2vec、NMF)这几方面进行考虑的。分箱特征的重要性:一般在建立分类模型时,需要对连续变量离散化,特征离散化后,模型会更稳定,降低了模型过拟合的风险。离散特征的增加和减少都很容易,易于模型的快速迭代;稀疏向量内积乘法运算速度快,计算结果
- 扫描线(板子整理) 矩形面积并与矩形周长并
why_not_fly
算法c++数据结构
前置知识:离散化,线段树基础即可,难度不大,重在思维矩形面积并扫描线,矩形面积并(洛谷)https://www.luogu.com.cn/problem/P5490为了归并区间中的关系(每一段都是连起来的,所以要右端点偏移映射,后面在代码中体现)与常规维护懒标记不同,这里是向上维护的,最后返回一个tree.len[1],就是根节点的值,就是答案(图片来源于董晓老师的博客)即每一段区间右边那个位置(
- 第十一周学习报告
三冬四夏会不会有点漫长
算法竞赛#算法训练周报学习
知识点复习了一些基本算法,二分,前缀和,差分,双指针,离散化,位运算,归并排序,高精度等比赛情况无做题情况1.CFdiv2A(10题):A.WeGotEverythingCovered!,A.SatisfyingConstraints,A.LeastProduct,A.RatingIncrease,A.ConstructiveProblems,A.BinaryImbalance,A.Halloum
- 保序离散化 前缀和 去重 pair AcWing 802. 区间和
三冬四夏会不会有点漫长
#acwing算法基础算法竞赛算法c++数据结构
#includeusingnamespacestd;constintN=3e5+10;inta[N],s[N];typedefpairPII;vectoralls;vectoradd,query;intfind(intx){intl=0,r=alls.size();while(l>1;if(alls[mid]>=x)r=mid;elsel=mid+1;}returnr+1;}intmain(){i
- AcWing算法学习笔记:基础算法(快速排序 + 归并排序 + 二分 + 高精度 +前缀和差分 + 双指针算法 + 位运算 + 离散化 + 区间和并)
一只可爱的小猴子
算法学习笔记
基础算法一、快速排序①快速排序⭐②第k个数二、归并排序①归并排序②逆序对的数量⭐三、二分①数的范围⭐②数的三次方根⭐四、高精度①高精度加法②高精度减法③高精度乘法④高精度除法五、前缀和差分①前缀和②子矩阵的和③差分④差分矩阵六、双指针算法①最长连续不重复子序列②数组元素的目标和③判断子序列七、位运算(二进制数中1的个数)⭐八、离散化(区间和)⭐九、区间合并一、快速排序①快速排序⭐算法至于关键步骤第
- 机器学习数据预处理--连续变量分箱
恒c
机器学习人工智能
文章目录原理概念等宽分箱等频分箱聚类分箱有监督分箱原理概念连续变量分箱即对连续型字段进行离散化处理,也就是将连续型字段转化为离散型字段。连续字段的离散过程如下所示:连续变量的离散过程也可以理解为连续变量取值的重新编码过程,在很多时候,连续变量的离散化也被称为连续变量分箱。需要注意的是,离散之后字段的含义将发生变化,原始字段Income代表用户真实收入状况,而离散之后的含义就变成了用户收入的等级划分
- 数字图像处理中的拉普拉斯变换
小鱼tuning
算法图像处理
拉普拉斯变换是数字图像处理中的一种技术,其原理是基于拉普拉斯算子,用于检测图像中的边缘和突出细节。具体原理如下:1.拉普拉斯算子:拉普拉斯算子是一种数学算子,用于计算图像的二阶导数。在数字图像处理中,拉普拉斯算子用于离散化图像,并通过有限差分来近似计算二阶导数。2.离散拉普拉斯算子:在数字图像处理中,图像被离散成像素网格。拉普拉斯算子通过以下3x3的离散核(模板)来近似计算二阶导数:0101-41
- AutoEncoder自动编码器、VAE变分自编码器、VQVAE量子化(离散化)的自编码器
丁希希哇
AIGC阅读学习算法深度学习人工智能pytorch
文章目录AutoEncoder自动编码器(一)AutoEncoder的基本架构(二)AutoEncoder的概率理解(三)AutoEncoder的局限VAE变分自编码器(VariationalAutoEncoder)(一)VAE简介(二)VAE的概率理解(三)VAE与AE(三)VAE与GAN(四)VAE的损失函数VQVAE量子化(离散化)的自编码器(一)VQVAE简介(二)VQVAE与VAE(三)
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持