tensorflow: name_scope和variable_scope

两个都是用来指定命名空间的.

区别1:name_scope不会为变量增添原始命名空间,variable_scope会给定义的变量增加原始命名空间,举例如下:

with tf.name_scope('V1'):
     a1=tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
     print(a1.name)
=>  a1:0
with tf.variable_scope('V1'):
     a1=tf.get_variable(name='a1',shape=[1],initializer=tf.constant_initializer(1))
     print(a1.name) 
=>  V1/a1:0

区别2:tf.variable_scope可以让变量有相同的命名,包括tf.get_variable得到的变量,还有tf.Variable的变量

             tf.name_scope可以让变量有相同的命名,只是限于tf.Variable的变量

with tf.variable_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.variable_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
	print a4.name

=》V1/a1:0
   V1/a2:0
   V2/a1:0
   V2/a2:0

with tf.name_scope('V1'):
	a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	print a1.name
	print a2.name
	print a3.name
    print a4.name

=》Variable a1 already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

应改为:
with tf.name_scope('V1'):
	# a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a2 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
with tf.name_scope('V2'):
	# a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
	a4 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a2')
  
with tf.Session() as sess:
	sess.run(tf.initialize_all_variables())
	# print a1.name
	print a2.name
	# print a3.name
    print a4.name


 

你可能感兴趣的:(tensorflow)