Spark实现WordCount的几种方式总结

点击上方蓝色字体,选择“设为星标”

回复”资源“获取更多惊喜

大数据技术与架构

点击右侧关注,大数据开发领域最强公众号!

暴走大数据

点击右侧关注,暴走大数据!

方法一:map + reduceByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object WordCount1 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount1")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).collect().foreach(println)
  }
}

方法二:使用countByValue代替map + reduceByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object WordCount2 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount2")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    lines.flatMap(_.split(" ")).countByValue().foreach(println)


  }
}

方法三:aggregateByKey或者foldByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD


/**
  * WordCount实现第三种方式:aggregateByKey或者foldByKey
  *
  * def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,combOp: (U, U) => U): RDD[(K, U)]
  *   1.zeroValue:给每一个分区中的每一个key一个初始值;
  *   2.seqOp:函数用于在每一个分区中用初始值逐步迭代value;(分区内聚合函数)
  *   3.combOp:函数用于合并每个分区中的结果。(分区间聚合函数)
  *
  *  foldByKey相当于aggregateByKey的简化操作,seqop和combop相同
  */
object WordCount3 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount3")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    lines.flatMap(_.split(" ")).map((_, 1)).aggregateByKey(0)(_ + _, _ + _).collect().foreach(println)
    
    lines.flatMap(_.split(" ")).map((_, 1)).foldByKey(0)(_ + _).collect().foreach(println)


  }
}

方法四:groupByKey+map

package com.cw.bigdata.spark.wordcount


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD


/**
  * WordCount实现的第四种方式:groupByKey+map
  */
object WordCount4 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount4")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    val groupByKeyRDD: RDD[(String, Iterable[Int])] = lines.flatMap(_.split(" ")).map((_, 1)).groupByKey()


    groupByKeyRDD.map(tuple => {
      (tuple._1, tuple._2.sum)
    }).collect().foreach(println)


  }
}

方法五:Scala原生实现wordcount

package com.cw.bigdata.spark.wordcount




/**
  * Scala原生实现wordcount
  */
object WordCount5 {
  def main(args: Array[String]): Unit = {


    val list = List("cw is cool", "wc is beautiful", "andy is beautiful", "mike is cool")
    /**
      * 第一步,将list中的元素按照分隔符这里是空格拆分,然后展开
      * 先map(_.split(" "))将每一个元素按照空格拆分
      * 然后flatten展开
      * flatmap即为上面两个步骤的整合
      */
    val res0 = list.map(_.split(" ")).flatten
    val res1 = list.flatMap(_.split(" "))


    println("第一步结果")
    println(res0)
    println(res1)


    /**
      * 第二步是将拆分后得到的每个单词生成一个元组
      * k是单词名称,v任意字符即可这里是1
      */
    val res3 = res1.map((_, 1))
    println("第二步结果")
    println(res3)
    /**
      * 第三步是根据相同的key合并
      */
    val res4 = res3.groupBy(_._1)
    println("第三步结果")
    println(res4)
    /**
      * 最后一步是求出groupBy后的每个key对应的value的size大小,即单词出现的个数
      */
    val res5 = res4.mapValues(_.size)
    println("最后一步结果")
    println(res5.toBuffer)
  }
}

方法六:combineByKey

package com.cw.bigdata.spark.wordcount


import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD


/**
  * WordCount实现的第六种方式:combineByKey
  */
object WordCount6 {
  def main(args: Array[String]): Unit = {
    val config: SparkConf = new SparkConf().setMaster("local[*]").setAppName("combineByKey")


    val sc: SparkContext = new SparkContext(config)


    val lines: RDD[String] = sc.textFile("in")


    val mapRDD: RDD[(String, Int)] = lines.flatMap(_.split(" ")).map((_, 1))


    // combineByKey实现wordcount
    mapRDD.combineByKey(
      x => x,
      (x: Int, y: Int) => x + y,
      (x: Int, y: Int) => x + y
    ).collect().foreach(println)


  }
}

欢迎点赞+收藏

欢迎转发至朋友圈

你可能感兴趣的:(人机交互,spark,isp,rpc,weex)