- nosql数据库技术与应用知识点
皆过客,揽星河
NoSQLnosql数据库大数据数据分析数据结构非关系型数据库
Nosql知识回顾大数据处理流程数据采集(flume、爬虫、传感器)数据存储(本门课程NoSQL所处的阶段)Hdfs、MongoDB、HBase等数据清洗(入仓)Hive等数据处理、分析(Spark、Flink等)数据可视化数据挖掘、机器学习应用(Python、SparkMLlib等)大数据时代存储的挑战(三高)高并发(同一时间很多人访问)高扩展(要求随时根据需求扩展存储)高效率(要求读写速度快)
- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- Hadoop架构
henan程序媛
hadoop大数据分布式
一、案列分析1.1案例概述现在已经进入了大数据(BigData)时代,数以万计用户的互联网服务时时刻刻都在产生大量的交互,要处理的数据量实在是太大了,以传统的数据库技术等其他手段根本无法应对数据处理的实时性、有效性的需求。HDFS顺应时代出现,在解决大数据存储和计算方面有很多的优势。1.2案列前置知识点1.什么是大数据大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的大量数据集合,
- 分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目大数据大数据pythonhadoop计算机毕业设计选题计算机毕业设计源码数据分析spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- 月度总结 | 2022年03月 | 考研与就业的抉择 | 确定未来走大数据开发路线
「已注销」
个人总结hadoop
一、时间线梳理3月3日,寻找到同专业的就业伙伴3月5日,着手准备Java八股文,决定先走Java后端路线3月8月,申请到了校图书馆的考研专座,决定暂时放弃就业,先准备考研,买了数学和408的资料书3月9日-3月13日,因疫情原因,宿舍区暂封,这段时间在准备考研,发现内容特别多3月13日-3月19日,大部分时间在刷Hadoop、Zookeeper、Kafka的视频,同时在准备实习的项目3月20日,退
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Java中的大数据处理框架对比分析
省赚客app开发者
java开发语言
Java中的大数据处理框架对比分析大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天,我们将深入探讨Java中常用的大数据处理框架,并对它们进行对比分析。大数据处理框架是现代数据驱动应用的核心,它们帮助企业处理和分析海量数据,以提取有价值的信息。本文将重点介绍ApacheHadoop、ApacheSpark、ApacheFlink和ApacheStorm这四种流行的
- 写出渗透测试信息收集详细流程
卿酌南烛_b805
一、扫描域名漏洞:域名漏洞扫描工具有AWVS、APPSCAN、Netspark、WebInspect、Nmap、Nessus、天镜、明鉴、WVSS、RSAS等。二、子域名探测:1、dns域传送漏洞2、搜索引擎查找(通过Google、bing、搜索c段)3、通过ssl证书查询网站:https://myssl.com/ssl.html和https://www.chinassl.net/ssltools
- Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
- Spark MLlib模型训练—推荐算法 ALS(Alternative Least Squares)
不二人生
SparkML实战spark-ml推荐算法算法
SparkMLlib模型训练—推荐算法ALS(AlternativeLeastSquares)如果你平时爱刷抖音,或者热衷看电影,不知道有没有过这样的体验:这类影视App你用得越久,它就好像会读心术一样,总能给你推荐对胃口的内容。其实这种迎合用户喜好的推荐,离不开机器学习中的推荐算法。在今天这一讲,我们就结合两个有趣的电影推荐场景,为你讲解SparkMLlib支持的协同过滤与频繁项集算法电影推荐场
- Hadoop学习第三课(HDFS架构--读、写流程)
小小程序员呀~
数据库hadoop架构bigdata
1.块概念举例1:一桶水1000ml,瓶子的规格100ml=>需要10个瓶子装完一桶水1010ml,瓶子的规格100ml=>需要11个瓶子装完一桶水1010ml,瓶子的规格200ml=>需要6个瓶子装完块的大小规格,只要是需要存储,哪怕一点点,也是要占用一个块的块大小的参数:dfs.blocksize官方默认的大小为128M官网:https://hadoop.apache.org/docs/r3.
- hadoop启动HDFS命令
m0_67401228
java搜索引擎linux后端
启动命令:/hadoop/sbin/start-dfs.sh停止命令:/hadoop/sbin/stop-dfs.sh
- Python基础知识进阶之正则表达式_头歌python正则表达式进阶
前端陈萨龙
程序员python学习面试
最后硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是
- 【计算机毕设-大数据方向】基于Hadoop的电商交易数据分析可视化系统的设计与实现
程序员-石头山
大数据实战案例大数据hadoop毕业设计毕设
博主介绍:✌全平台粉丝5W+,高级大厂开发程序员,博客之星、掘金/知乎/华为云/阿里云等平台优质作者。【源码获取】关注并且私信我【联系方式】最下边感兴趣的可以先收藏起来,同学门有不懂的毕设选题,项目以及论文编写等相关问题都可以和学长沟通,希望帮助更多同学解决问题前言随着电子商务行业的迅猛发展,电商平台积累了海量的数据资源,这些数据不仅包括用户的基本信息、购物记录,还包括用户的浏览行为、评价反馈等多
- 分布式离线计算—Spark—基础介绍
测试开发abbey
人工智能—大数据
原文作者:饥渴的小苹果原文地址:【Spark】Spark基础教程目录Spark特点Spark相对于Hadoop的优势Spark生态系统Spark基本概念Spark结构设计Spark各种概念之间的关系Executor的优点Spark运行基本流程Spark运行架构的特点Spark的部署模式Spark三种部署方式Hadoop和Spark的统一部署摘要:Spark是基于内存计算的大数据并行计算框架Spar
- spark常用命令
我是浣熊的微笑
spark
查看报错日志:yarnlogsapplicationIDspark2-submit--masteryarn--classcom.hik.ReadHdfstest-1.0-SNAPSHOT.jar进入$SPARK_HOME目录,输入bin/spark-submit--help可以得到该命令的使用帮助。hadoop@wyy:/app/hadoop/spark100$bin/spark-submit--
- spark启动命令
学不会又听不懂
spark大数据分布式
hadoop启动:cd/root/toolssstart-dfs.sh,只需在hadoop01上启动stop-dfs.sh日志查看:cat/root/toolss/hadoop/logs/hadoop-root-datanode-hadoop03.outzookeeper启动:cd/root/toolss/zookeeperbin/zkServer.shstart,三台都要启动bin/zkServ
- 大数据领域的深度分析——AI是在帮助开发者还是取代他们?
阳爱铭
大数据与数据中台技术沉淀大数据人工智能后端数据库架构数据库开发etl工程师chatgpt
在大数据领域,生成式人工智能(AIGC)的应用正在迅速扩展,改变了数据科学家和开发者的工作方式。本文将从大数据的专业视角,探讨AI工具在这一领域的作用,以及它们是如何帮助开发者而非取代他们的。1.大数据领域的AI工具现状在大数据领域,AI工具已经取得了显著进展,以下是几款主要的AI工具及其功能和实际应用:ApacheSpark+MLlib:ApacheSpark是一个开源的分布式计算系统,广泛用于
- 大数据新视界 --大数据大厂之 Spark 性能优化秘籍:从配置到代码实践
青云交
大数据新视界Spark性能优化内存分配并行度存储级别shuffle减少算法优化代码实践数据读取广播变量数据倾斜Spark数据库
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:Ja
- 编程常用命令总结
Yellow0523
LinuxBigData大数据
编程命令大全1.软件环境变量的配置JavaScalaSparkHadoopHive2.大数据软件常用命令Spark基本命令Spark-SQL命令Hive命令HDFS命令YARN命令Zookeeper命令kafka命令Hibench命令MySQL命令3.Linux常用命令Git命令conda命令pip命令查看Linux系统的详细信息查看Linux系统架构(X86还是ARM,两种方法都可)端口号命令L
- Hadoop常见面试题整理及解答
叶青舟
Linuxhdfs大数据hadooplinux
Hadoop常见面试题整理及解答一、基础知识篇:1.把数据仓库从传统关系型数据库转到hadoop有什么优势?答:(1)关系型数据库成本高,且存储空间有限。而Hadoop使用较为廉价的机器存储数据,且Hadoop可以将大量机器构建成一个集群,并在集群中使用HDFS文件系统统一管理数据,极大的提高了数据的存储及处理能力。(2)关系型数据库仅支持标准结构化数据格式,Hadoop不仅支持标准结构化数据格式
- 【面试系列】Spark 高频面试题解答
野老杂谈
全网最全IT公司面试宝典面试spark职场和发展大数据
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️大数据平台建设指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台的核心技术和方法。⭐️《遇见Python:初识、了解与热恋》:涵盖了Pytho
- spark常见面试题
爱敲代码的小黑
spark大数据分布式
文章目录1.Spark的运行流程?2.Spark中的RDD机制理解吗?3.RDD的宽窄依赖4.DAG中为什么要划分Stage?5.Spark程序执行,有时候默认为什么会产生很多task,怎么修改默认task执行个数?6.RDD中reduceBykey与groupByKey哪个性能好,为什么?7.SparkMasterHA主从切换过程不会影响到集群已有作业的运行,为什么?8.SparkMaster使
- Spark面试题
golove666
面试题大全spark大数据分布式面试
Spark面试题1.Spark基础概念1.1解释Spark是什么以及它的主要特点Spark是什么?Spark的主要特点1.2描述Spark运行时架构和组件主要的Spark架构组件:1.3讲述Spark中的弹性分布式数据集(RDD)和数据帧(DataFrame)弹性分布式数据集(RDD)主要特征:创建和转换:使用场景:数据帧(DataFrame)主要特征:创建和操作:使用场景:RDD与DataFra
- 图计算:基于SparkGrpahX计算聚类系数
妙龄少女郭德纲
Spark图算法Scala聚类数据挖掘机器学习
图计算:基于SparkGrpahX计算聚类系数文章目录图计算:基于SparkGrpahX计算聚类系数一、什么是聚类系数二、基于SparkGraphX的聚类系数代码实现总结一、什么是聚类系数聚类系数(ClusteringCoefficient)是图计算和网络分析中的一个重要概念,用于衡量网络中节点的局部聚集程度。它有助于理解网络中节点之间的紧密程度和网络的结构特性。这是一种用来衡量图中节点聚类程度的
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟