Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)

Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)

    • 一、安装CPU版本
      • 1、添加清华源
      • 2、创建并激活一个新环境
      • 3、安装依赖
      • 4、使用yolov3检测
    • 二、安装GPU版本
      • 1、安装前言
      • 2、打开anaconda Prompt并创建新环境
      • 3、安装Pytorch
      • 4、在Pycharm中验证

一、安装CPU版本

1、添加清华源

防止下载速度过慢,我们需要先添加清华源:(在安装的Anaconda程序中的Anaconda prompt中添加)
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第1张图片

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

设置搜索时显示通道地址:

conda config --set show_channel_urls yes

2、创建并激活一个新环境

进入Anaconda程序中的Anaconda prompt:

conda create -n pytorch-cpu python=3.7 #创建环境
conda activate pytorch-cpu #激活环境

3、安装依赖

建议一个一个安装

对于第一个命令我们应该去掉-c pytorch,这样才是调用我们添加的清华源而不是默认源。
除了第一句命令,后面的命令是后面用来验证用到的包

//pytorch
conda install pytorch torchvision cpuonly -c pytorch
//opencv-python
pip install opencv-python
//numpy
conda install numpy
//pillow
conda install pillow
//tqdm
conda install tqdm
//matplotlib
conda install matplotlib

4、使用yolov3检测

下载源码(就在cmd中下载即可):

git clone https://github.com/ultralytics/yolov3.git

我们需要准备的:

1.网络模型(.weight),放入./weight文件夹中
2.网络文件(.cfg)yolov3-tiny.cfg,./cfg文件夹中已存在
3.数据类别(.names)使用默认coco.names,共80类
4.测试图像 放在./data/samples/目录中

准备完全的项目:下载地址
提取码:sw0c

打开根目录下的detect.py,169-184行为检测时的一些参数,测试时将下图红框位置更改为上步放入的文件:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第2张图片
我是在Pycharm下面运行的文件:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第3张图片
结果如上图所示,结果保存在.\yolov3\outpt中:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第4张图片

二、安装GPU版本

1、安装前言

由于本人在前面是安装了tensorflow-gpu的,所以那时候已经将CUDA及CUDNN安装完成。大家可以去参考参考安装教程:参考教程

2、打开anaconda Prompt并创建新环境

#创建新环境
conda create --name pytorch-gpu python=3.7
#激活环境
conda activate pytorc-gpu
#关闭该环境的话,输入指令
conda deactivate

3、安装Pytorch

进入Pytorch官网
选择自己需要的版本并查看下面的命令:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第5张图片
由于我安装的是CUDA9.0,上面没有这个版本,所以需要去previous-versions网站查找以前版本的安装命令。
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第6张图片
同样的需要去掉-c pytorch。
激活我们前面创建的pytorch-gpu环境,运行上面的命令,若是下载失败,记得换源并多次下载即可。

4、在Pycharm中验证

运行Pycharm,新建python文件输入下面命令:

import torch
print(torch.cuda.is_available())

选择对应的Python环境:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第7张图片
选择刚刚创建的pytorch-gpu:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第8张图片
最后结果:
在这里插入图片描述
最后运行刚刚创建的Python文件,出现下面即是成功:
Win10+Anaconda安装CPU版本Pytorch与GPU版Pytorch(CUDA 9.0)_第9张图片

你可能感兴趣的:(笔记,python,深度学习,anaconda,经验分享)