import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv('train_data.csv',header=None)
col_name = [
'duration','protocol_type','service','flag','src_bytes','dst_bytes','land','wrong_fragment','urgent',
'hot','num_failed_logins','logged_in','num_compromised','root_shell','su_attempted'
,'num_root','num_file_creations','num_shells','num_access_files','num_outbound_cmds','is_hot_login','is_guest_login',
'count','srv_count','serror_rate','srv_serror_rate','rerror_rate','srv_rerror_rate','same_srv_rate'
,'diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count','dst_host_same_srv_rate'
,'dst_host_diff_srv_rate','dst_host_same_src_port_rate','dst_host_srv_diff_host_rate','dst_host_serror_rate'
,'dst_host_srv_serror_rate','dst_host_rerror_rate','dst_host_srv_rerror_rate','target'
]
# 将列名添加到df中
df.columns=col_name
df.info()
RangeIndex: 4898431 entries, 0 to 4898430
Data columns (total 42 columns):
duration int64
protocol_type object
service object
flag object
src_bytes int64
dst_bytes int64
land int64
wrong_fragment int64
urgent int64
hot int64
num_failed_logins int64
logged_in int64
num_compromised int64
root_shell int64
su_attempted int64
num_root int64
num_file_creations int64
num_shells int64
num_access_files int64
num_outbound_cmds int64
is_hot_login int64
is_guest_login int64
count int64
srv_count int64
serror_rate float64
srv_serror_rate float64
rerror_rate float64
srv_rerror_rate float64
same_srv_rate float64
diff_srv_rate float64
srv_diff_host_rate float64
dst_host_count int64
dst_host_srv_count int64
dst_host_same_srv_rate float64
dst_host_diff_srv_rate float64
dst_host_same_src_port_rate float64
dst_host_srv_diff_host_rate float64
dst_host_serror_rate float64
dst_host_srv_serror_rate float64
dst_host_rerror_rate float64
dst_host_srv_rerror_rate float64
target object
dtypes: float64(15), int64(23), object(4)
memory usage: 1.5+ GB
训练数据集一共4898431条数据,42个字段,15个浮点型,23个整型,4个字符串型;
其中41个 特征字段,1个标签字段(离散型、字符串),41个特征中,共32个连续类型,9个离散类型(包含3个字符型protocol_type、service、flag,6个0-1型land、logged_in、root_shell、su_attempted、is_hot_login、is_guest_login)
df.describe().T
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
duration | 4898431.0 | 4.834243e+01 | 723.329811 | 0.0 | 0.00 | 0.0 | 0.00 | 5.832900e+04 |
src_bytes | 4898431.0 | 1.834621e+03 | 941431.074484 | 0.0 | 45.00 | 520.0 | 1032.00 | 1.379964e+09 |
dst_bytes | 4898431.0 | 1.093623e+03 | 645012.333754 | 0.0 | 0.00 | 0.0 | 0.00 | 1.309937e+09 |
land | 4898431.0 | 5.716116e-06 | 0.002391 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
wrong_fragment | 4898431.0 | 6.487792e-04 | 0.042854 | 0.0 | 0.00 | 0.0 | 0.00 | 3.000000e+00 |
urgent | 4898431.0 | 7.961733e-06 | 0.007215 | 0.0 | 0.00 | 0.0 | 0.00 | 1.400000e+01 |
hot | 4898431.0 | 1.243766e-02 | 0.468978 | 0.0 | 0.00 | 0.0 | 0.00 | 7.700000e+01 |
num_failed_logins | 4898431.0 | 3.205108e-05 | 0.007299 | 0.0 | 0.00 | 0.0 | 0.00 | 5.000000e+00 |
logged_in | 4898431.0 | 1.435290e-01 | 0.350612 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
num_compromised | 4898431.0 | 8.088304e-03 | 3.856481 | 0.0 | 0.00 | 0.0 | 0.00 | 7.479000e+03 |
root_shell | 4898431.0 | 6.818510e-05 | 0.008257 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
su_attempted | 4898431.0 | 3.674646e-05 | 0.008082 | 0.0 | 0.00 | 0.0 | 0.00 | 2.000000e+00 |
num_root | 4898431.0 | 1.293496e-02 | 3.938075 | 0.0 | 0.00 | 0.0 | 0.00 | 7.468000e+03 |
num_file_creations | 4898431.0 | 1.188748e-03 | 0.124186 | 0.0 | 0.00 | 0.0 | 0.00 | 4.300000e+01 |
num_shells | 4898431.0 | 7.430951e-05 | 0.008738 | 0.0 | 0.00 | 0.0 | 0.00 | 2.000000e+00 |
num_access_files | 4898431.0 | 1.021143e-03 | 0.035510 | 0.0 | 0.00 | 0.0 | 0.00 | 9.000000e+00 |
num_outbound_cmds | 4898431.0 | 0.000000e+00 | 0.000000 | 0.0 | 0.00 | 0.0 | 0.00 | 0.000000e+00 |
is_hot_login | 4898431.0 | 4.082940e-07 | 0.000639 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
is_guest_login | 4898431.0 | 8.351654e-04 | 0.028887 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
count | 4898431.0 | 3.349734e+02 | 211.990782 | 0.0 | 121.00 | 510.0 | 511.00 | 5.110000e+02 |
srv_count | 4898431.0 | 2.952671e+02 | 245.992710 | 0.0 | 10.00 | 510.0 | 511.00 | 5.110000e+02 |
serror_rate | 4898431.0 | 1.779703e-01 | 0.381876 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
srv_serror_rate | 4898431.0 | 1.780370e-01 | 0.382254 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
rerror_rate | 4898431.0 | 5.766509e-02 | 0.232253 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
srv_rerror_rate | 4898431.0 | 5.773010e-02 | 0.232660 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
same_srv_rate | 4898431.0 | 7.898842e-01 | 0.389296 | 0.0 | 1.00 | 1.0 | 1.00 | 1.000000e+00 |
diff_srv_rate | 4898431.0 | 2.117961e-02 | 0.082715 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
srv_diff_host_rate | 4898431.0 | 2.826080e-02 | 0.140560 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
dst_host_count | 4898431.0 | 2.329811e+02 | 64.020937 | 0.0 | 255.00 | 255.0 | 255.00 | 2.550000e+02 |
dst_host_srv_count | 4898431.0 | 1.892142e+02 | 105.912767 | 0.0 | 49.00 | 255.0 | 255.00 | 2.550000e+02 |
dst_host_same_srv_rate | 4898431.0 | 7.537132e-01 | 0.411186 | 0.0 | 0.41 | 1.0 | 1.00 | 1.000000e+00 |
dst_host_diff_srv_rate | 4898431.0 | 3.071111e-02 | 0.108543 | 0.0 | 0.00 | 0.0 | 0.04 | 1.000000e+00 |
dst_host_same_src_port_rate | 4898431.0 | 6.050520e-01 | 0.480988 | 0.0 | 0.00 | 1.0 | 1.00 | 1.000000e+00 |
dst_host_srv_diff_host_rate | 4898431.0 | 6.464107e-03 | 0.041260 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
dst_host_serror_rate | 4898431.0 | 1.780911e-01 | 0.381838 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
dst_host_srv_serror_rate | 4898431.0 | 1.778859e-01 | 0.382177 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
dst_host_rerror_rate | 4898431.0 | 5.792780e-02 | 0.230943 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
dst_host_srv_rerror_rate | 4898431.0 | 5.765941e-02 | 0.230978 | 0.0 | 0.00 | 0.0 | 0.00 | 1.000000e+00 |
df.target.value_counts()
smurf. 2807886
neptune. 1072017
normal. 972781
satan. 15892
ipsweep. 12481
portsweep. 10413
nmap. 2316
back. 2203
warezclient. 1020
teardrop. 979
pod. 264
guess_passwd. 53
buffer_overflow. 30
land. 21
warezmaster. 20
imap. 12
rootkit. 10
loadmodule. 9
ftp_write. 8
multihop. 7
phf. 4
perl. 3
spy. 2
Name: target, dtype: int64
# 已知的异常类型分类
#标签分类
def attack_classify(tag):
dic_attack_type ={
'DOS':['land.','pod.','teardrop.','back.','neptune.','smurf.'],
'R2L':['spy.','phf.','multihop.','ftp_write.','imap.','warezmaster.','guess_passwd.','warezclient.'],
'U2R':['buffer_overflow.','rootkit.','loadmodule.','perl.'],
'PROBING':['nmap.','portsweep.','ipsweep.','satan.']}
for i in dic_attack_type.keys():
if tag in dic_attack_type[i]:
return i
else:
return tag
df['target_type']=df.target.apply(attack_classify)
df.target_type.value_counts()
DOS 3883370
normal. 972781
PROBING 41102
R2L 1126
U2R 52
Name: target_type, dtype: int64
gp = df.groupby(['target_type','target']).count()
gp.iloc[:,1]
target_type target
DOS back. 2203
land. 21
neptune. 1072017
pod. 264
smurf. 2807886
teardrop. 979
PROBING ipsweep. 12481
nmap. 2316
portsweep. 10413
satan. 15892
R2L ftp_write. 8
guess_passwd. 53
imap. 12
multihop. 7
phf. 4
spy. 2
warezclient. 1020
warezmaster. 20
U2R buffer_overflow. 30
loadmodule. 9
perl. 3
rootkit. 10
normal. normal. 972781
Name: protocol_type, dtype: int64
protocol_type、service、flag
df.protocol_type.value_counts()
icmp 2833545
tcp 1870598
udp 194288
Name: protocol_type, dtype: int64
df.service.value_counts()
ecr_i 2811660
private 1100831
http 623091
smtp 96554
other 72653
...
tftp_u 3
http_8001 2
aol 2
harvest 2
http_2784 1
Name: service, Length: 70, dtype: int64
df.flag.value_counts()
SF 3744328
S0 869829
REJ 268874
RSTR 8094
RSTO 5344
SH 1040
S1 532
S2 161
RSTOS0 122
OTH 57
S3 50
Name: flag, dtype: int64
# land、logged_in、root_shell、su_attempted、is_hot_login、is_guest_login
df.land.value_counts()
0 4898403
1 28
Name: land, dtype: int64
df.logged_in.value_counts()
0 4195364
1 703067
Name: logged_in, dtype: int64
df.root_shell.value_counts()
0 4898097
1 334
Name: root_shell, dtype: int64
df.su_attempted.value_counts()
0 4898321
2 70
1 40
Name: su_attempted, dtype: int64
df.is_hot_login.value_counts()
0 4898429
1 2
Name: is_hot_login, dtype: int64
df.is_guest_login.value_counts()
0 4894340
1 4091
Name: is_guest_login, dtype: int64
pd.crosstab(df.protocol_type,df.target).T
protocol_type | icmp | tcp | udp |
---|---|---|---|
target | |||
back. | 0 | 2203 | 0 |
buffer_overflow. | 0 | 30 | 0 |
ftp_write. | 0 | 8 | 0 |
guess_passwd. | 0 | 53 | 0 |
imap. | 0 | 12 | 0 |
ipsweep. | 11557 | 924 | 0 |
land. | 0 | 21 | 0 |
loadmodule. | 0 | 9 | 0 |
multihop. | 0 | 7 | 0 |
neptune. | 0 | 1072017 | 0 |
nmap. | 1032 | 1034 | 250 |
normal. | 12763 | 768670 | 191348 |
perl. | 0 | 3 | 0 |
phf. | 0 | 4 | 0 |
pod. | 264 | 0 | 0 |
portsweep. | 6 | 10407 | 0 |
rootkit. | 0 | 7 | 3 |
satan. | 37 | 14147 | 1708 |
smurf. | 2807886 | 0 | 0 |
spy. | 0 | 2 | 0 |
teardrop. | 0 | 0 | 979 |
warezclient. | 0 | 1020 | 0 |
warezmaster. | 0 | 20 | 0 |
pd.set_option('max_columns',100)
pd.set_option('max_row',100)
pd.crosstab(df.service,df.target)
target | back. | buffer_overflow. | ftp_write. | guess_passwd. | imap. | ipsweep. | land. | loadmodule. | multihop. | neptune. | nmap. | normal. | perl. | phf. | pod. | portsweep. | rootkit. | satan. | smurf. | spy. | teardrop. | warezclient. | warezmaster. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
service | |||||||||||||||||||||||
IRC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 520 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
X11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 129 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
Z39_50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1066 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
aol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
auth | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1037 | 1 | 2328 | 0 | 0 | 0 | 9 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
bgp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1035 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
courier | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1011 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
csnet_ns | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1038 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
ctf | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1037 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
daytime | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1037 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
discard | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1040 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
domain | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1046 | 1 | 38 | 0 | 0 | 0 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
domain_u | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 57773 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
echo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1040 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
eco_i | 0 | 0 | 0 | 0 | 0 | 11517 | 0 | 0 | 0 | 0 | 1026 | 3768 | 0 | 0 | 0 | 4 | 0 | 23 | 0 | 0 | 0 | 0 | 0 |
ecr_i | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 6 | 3456 | 0 | 0 | 259 | 2 | 0 | 11 | 2807886 | 0 | 0 | 0 | 0 |
efs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1032 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
exec | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1035 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
finger | 0 | 0 | 0 | 0 | 0 | 13 | 20 | 0 | 0 | 1800 | 1 | 5017 | 0 | 0 | 0 | 13 | 0 | 27 | 0 | 0 | 0 | 0 | 0 |
ftp | 0 | 1 | 2 | 0 | 0 | 13 | 0 | 1 | 2 | 1042 | 1 | 3821 | 0 | 0 | 0 | 13 | 1 | 8 | 0 | 0 | 0 | 307 | 2 |
ftp_data | 0 | 8 | 4 | 0 | 0 | 13 | 0 | 3 | 3 | 1805 | 1 | 38093 | 0 | 0 | 0 | 14 | 1 | 26 | 0 | 0 | 0 | 708 | 18 |
gopher | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1039 | 1 | 0 | 0 | 0 | 0 | 13 | 0 | 11 | 0 | 0 | 0 | 0 | 0 |
harvest | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
hostnames | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1037 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
http | 2203 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1801 | 1 | 619046 | 0 | 4 | 0 | 16 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
http_2784 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
http_443 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1036 | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
http_8001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
imap4 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 1043 | 1 | 3 | 0 | 0 | 0 | 8 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
iso_tsap | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1038 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
klogin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1040 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
kshell | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1030 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
ldap | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1033 | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
link | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1038 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
login | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1032 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
mtp | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1044 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
name | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1036 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
netbios_dgm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1039 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
netbios_ns | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1041 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
netbios_ssn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1042 | 1 | 0 | 0 | 0 | 0 | 8 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
netstat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1038 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
nnsp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1030 | 1 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
nntp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1043 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
ntp_u | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3833 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
other | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1022 | 1 | 56520 | 0 | 0 | 0 | 2649 | 3 | 12453 | 0 | 0 | 0 | 5 | 0 |
pm_dump | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 |
pop_2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1043 | 1 | 0 | 0 | 0 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
pop_3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1046 | 1 | 922 | 0 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
printer | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1034 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
private | 0 | 0 | 0 | 0 | 0 | 702 | 0 | 0 | 0 | 1013720 | 1231 | 73853 | 0 | 0 | 0 | 7200 | 0 | 3146 | 0 | 0 | 979 | 0 | 0 |
red_i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
remote_job | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1041 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
rje | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1038 | 1 | 0 | 0 | 0 | 0 | 15 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
shell | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1034 | 1 | 5 | 0 | 0 | 0 | 7 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
smtp | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1140 | 1 | 95371 | 0 | 0 | 0 | 15 | 0 | 14 | 0 | 0 | 0 | 0 | 0 |
sql_net | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1039 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
ssh | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1039 | 1 | 7 | 0 | 0 | 0 | 12 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
sunrpc | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1043 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
supdup | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1042 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
systat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1038 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
telnet | 0 | 21 | 0 | 53 | 0 | 14 | 1 | 5 | 2 | 1923 | 1 | 2227 | 3 | 0 | 0 | 13 | 5 | 7 | 0 | 2 | 0 | 0 | 0 |
tftp_u | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
tim_i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
time | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1040 | 1 | 509 | 0 | 0 | 0 | 13 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
urh_i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 148 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
urp_i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5375 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
uucp | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1027 | 1 | 0 | 0 | 0 | 0 | 7 | 0 | 6 | 0 | 0 | 0 | 0 | 0 |
uucp_path | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1044 | 1 | 0 | 0 | 0 | 0 | 10 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
vmnet | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1041 | 1 | 0 | 0 | 0 | 0 | 9 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
whois | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 | 1042 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
# service特征与target_type交叉表
pd.crosstab(df.service,df.target_type)
target_type | DOS | PROBING | R2L | U2R | normal. |
---|---|---|---|---|---|
service | |||||
IRC | 0 | 1 | 0 | 0 | 520 |
X11 | 0 | 6 | 0 | 0 | 129 |
Z39_50 | 1066 | 12 | 0 | 0 | 0 |
aol | 0 | 2 | 0 | 0 | 0 |
auth | 1037 | 17 | 0 | 0 | 2328 |
bgp | 1035 | 12 | 0 | 0 | 0 |
courier | 1011 | 10 | 0 | 0 | 0 |
csnet_ns | 1038 | 13 | 0 | 0 | 0 |
ctf | 1037 | 31 | 0 | 0 | 0 |
daytime | 1037 | 19 | 0 | 0 | 0 |
discard | 1040 | 19 | 0 | 0 | 0 |
domain | 1046 | 29 | 0 | 0 | 38 |
domain_u | 0 | 9 | 0 | 0 | 57773 |
echo | 1040 | 19 | 0 | 0 | 0 |
eco_i | 0 | 12570 | 0 | 0 | 3768 |
ecr_i | 2808145 | 59 | 0 | 0 | 3456 |
efs | 1032 | 10 | 0 | 0 | 0 |
exec | 1035 | 10 | 0 | 0 | 0 |
finger | 1820 | 54 | 0 | 0 | 5017 |
ftp | 1042 | 35 | 313 | 3 | 3821 |
ftp_data | 1805 | 54 | 733 | 12 | 38093 |
gopher | 1039 | 38 | 0 | 0 | 0 |
harvest | 0 | 2 | 0 | 0 | 0 |
hostnames | 1037 | 13 | 0 | 0 | 0 |
http | 4004 | 37 | 4 | 0 | 619046 |
http_2784 | 0 | 1 | 0 | 0 | 0 |
http_443 | 1036 | 8 | 0 | 0 | 0 |
http_8001 | 0 | 2 | 0 | 0 | 0 |
imap4 | 1043 | 11 | 12 | 0 | 3 |
iso_tsap | 1038 | 14 | 0 | 0 | 0 |
klogin | 1040 | 10 | 0 | 0 | 0 |
kshell | 1030 | 10 | 0 | 0 | 0 |
ldap | 1033 | 8 | 0 | 0 | 0 |
link | 1038 | 31 | 0 | 0 | 0 |
login | 1032 | 11 | 2 | 0 | 0 |
mtp | 1044 | 32 | 0 | 0 | 0 |
name | 1036 | 31 | 0 | 0 | 0 |
netbios_dgm | 1039 | 13 | 0 | 0 | 0 |
netbios_ns | 1041 | 13 | 0 | 0 | 0 |
netbios_ssn | 1042 | 13 | 0 | 0 | 0 |
netstat | 1038 | 18 | 0 | 0 | 0 |
nnsp | 1030 | 8 | 0 | 0 | 0 |
nntp | 1043 | 16 | 0 | 0 | 0 |
ntp_u | 0 | 0 | 0 | 0 | 3833 |
other | 1022 | 15103 | 5 | 3 | 56520 |
pm_dump | 0 | 5 | 0 | 0 | 0 |
pop_2 | 1043 | 12 | 0 | 0 | 0 |
pop_3 | 1046 | 13 | 0 | 0 | 922 |
printer | 1034 | 11 | 0 | 0 | 0 |
private | 1014699 | 12279 | 0 | 0 | 73853 |
red_i | 0 | 0 | 0 | 0 | 9 |
remote_job | 1041 | 32 | 0 | 0 | 0 |
rje | 1038 | 32 | 0 | 0 | 0 |
shell | 1034 | 12 | 0 | 0 | 5 |
smtp | 1140 | 43 | 0 | 0 | 95371 |
sql_net | 1039 | 13 | 0 | 0 | 0 |
ssh | 1039 | 29 | 0 | 0 | 7 |
sunrpc | 1043 | 13 | 0 | 0 | 0 |
supdup | 1042 | 18 | 0 | 0 | 0 |
systat | 1038 | 18 | 0 | 0 | 0 |
telnet | 1924 | 35 | 57 | 34 | 2227 |
tftp_u | 0 | 0 | 0 | 0 | 3 |
tim_i | 5 | 0 | 0 | 0 | 7 |
time | 1040 | 30 | 0 | 0 | 509 |
urh_i | 0 | 0 | 0 | 0 | 148 |
urp_i | 0 | 3 | 0 | 0 | 5375 |
uucp | 1027 | 14 | 0 | 0 | 0 |
uucp_path | 1044 | 13 | 0 | 0 | 0 |
vmnet | 1041 | 12 | 0 | 0 | 0 |
whois | 1042 | 31 | 0 | 0 | 0 |
pd.crosstab(df.flag,df.target).T
flag | OTH | REJ | RSTO | RSTOS0 | RSTR | S0 | S1 | S2 | S3 | SF | SH |
---|---|---|---|---|---|---|---|---|---|---|---|
target | |||||||||||
back. | 0 | 0 | 0 | 0 | 91 | 0 | 2 | 5 | 0 | 2105 | 0 |
buffer_overflow. | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 29 | 0 |
ftp_write. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
guess_passwd. | 0 | 0 | 45 | 0 | 4 | 0 | 0 | 0 | 2 | 2 | 0 |
imap. | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 6 | 4 |
ipsweep. | 0 | 823 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 11622 | 0 |
land. | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 0 |
loadmodule. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 |
multihop. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
neptune. | 0 | 199970 | 4600 | 0 | 0 | 867446 | 0 | 0 | 0 | 1 | 0 |
nmap. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1282 | 1034 |
normal. | 13 | 53473 | 600 | 0 | 334 | 424 | 528 | 153 | 46 | 917208 | 2 |
perl. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
phf. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
pod. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 264 | 0 |
portsweep. | 44 | 2330 | 55 | 122 | 7663 | 191 | 0 | 0 | 0 | 8 | 0 |
rootkit. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 |
satan. | 0 | 12278 | 6 | 0 | 1 | 1746 | 1 | 2 | 1 | 1857 | 0 |
smurf. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2807886 | 0 |
spy. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
teardrop. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 979 | 0 |
warezclient. | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1016 | 0 |
warezmaster. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | 0 |
pd.crosstab(df.flag,df.target_type)
target_type | DOS | PROBING | R2L | U2R | normal. |
---|---|---|---|---|---|
flag | |||||
OTH | 0 | 44 | 0 | 0 | 13 |
REJ | 199970 | 15431 | 0 | 0 | 53473 |
RSTO | 4600 | 97 | 46 | 1 | 600 |
RSTOS0 | 0 | 122 | 0 | 0 | 0 |
RSTR | 91 | 7664 | 5 | 0 | 334 |
S0 | 867467 | 1937 | 1 | 0 | 424 |
S1 | 2 | 1 | 1 | 0 | 528 |
S2 | 5 | 2 | 1 | 0 | 153 |
S3 | 0 | 1 | 3 | 0 | 46 |
SF | 2811235 | 14769 | 1065 | 51 | 917208 |
SH | 0 | 1034 | 4 | 0 | 2 |
df_copy= df.copy()
# df_t_copy = df_test.copy()
only_1_field = []
for i in df.columns:
if len(df[i].value_counts())<=1:
only_1_field.append(i)
only_1_field
['num_outbound_cmds']
for i in only_1_field:
del df[i]
#统计每个特征各种value出现的次数,并将其放入字典中
# features_dic = {}
# for i in df.columns.values.tolist():
# features_dic[i]=dict(df.loc[:,i].value_counts())
# features_dic
{'duration': {0: 4779492,
1: 23886,
2: 8139,
3: 6016,
5: 5576,
2630: 5061,
4: 3738,
14: 2673,
10: 1746,
7: 1651,
6: 1625,
9: 1061,
2715: 1009,
8: 964,
11: 914,
15: 888,
2625: 855,
2620: 744,
27: 712,
2594: 708,
19: 664,
16: 649,
12: 639,
23: 601,
28: 589,
13: 573,
20: 531,
21: 506,
2638: 492,
22: 489,
30: 467,
25: 441,
2634: 434,
24: 403,
2639: 400,
26: 389,
18: 331,
2470: 324,
2350: 311,
2593: 310,
31: 293,
29: 288,
2450: 285,
17: 262,
1995: 248,
2474: 226,
7030: 205,
32: 186,
2718: 168,
2420: 166,
6649: 157,
4564: 153,
2592: 147,
2000: 140,
2717: 138,
2595: 133,
2635: 127,
35: 126,
2472: 125,
12990: 123,
2586: 122,
34: 121,
33: 121,
4774: 121,
17640: 117,
2712: 114,
2714: 109,
36: 107,
2585: 107,
5610: 107,
63: 105,
37: 105,
2476: 103,
10339: 102,
2465: 100,
5415: 98,
38: 98,
4785: 95,
40: 95,
2719: 93,
39: 91,
9280: 90,
2723: 89,
2240: 88,
2705: 88,
1470: 87,
2429: 87,
2469: 86,
2540: 85,
1390: 84,
15629: 82,
5065: 82,
2710: 82,
1355: 82,
2975: 81,
1935: 80,
1944: 80,
7794: 79,
20234: 74,
2431: 74,
45: 72,
2579: 72,
2596: 71,
2708: 71,
4620: 71,
2584: 71,
12810: 69,
1360: 67,
899: 67,
2713: 66,
41: 66,
2422: 65,
43: 65,
2238: 64,
16799: 64,
1395: 63,
46: 63,
42: 63,
2597: 62,
2430: 61,
48: 61,
2583: 61,
5605: 60,
3990: 59,
4024: 59,
4185: 59,
1399: 58,
4555: 58,
44: 57,
16790: 56,
4015: 56,
7194: 56,
4934: 56,
60: 56,
2580: 55,
4935: 54,
4939: 54,
47: 54,
2629: 53,
4776: 53,
2588: 53,
1930: 52,
9721: 50,
50: 49,
4940: 49,
2589: 49,
4298: 49,
3995: 49,
15449: 49,
9100: 48,
2703: 48,
17037: 48,
4250: 48,
2615: 48,
4729: 47,
5561: 47,
15440: 46,
1404: 46,
17038: 45,
2477: 45,
2473: 44,
1385: 44,
14498: 44,
2590: 44,
3924: 43,
2368: 43,
53: 43,
1974: 41,
49: 41,
58: 40,
15620: 40,
9400: 40,
7412: 40,
11010: 40,
2367: 39,
14497: 39,
52: 39,
54: 39,
2432: 39,
10340: 38,
7782: 37,
2440: 37,
7783: 37,
55: 37,
1357: 37,
2242: 36,
4717: 36,
2275: 36,
3030: 36,
12999: 36,
4786: 35,
2445: 35,
2460: 35,
4705: 35,
1704: 34,
9427: 34,
51: 34,
4718: 34,
62: 34,
2599: 33,
795: 33,
1990: 33,
17049: 33,
7251: 33,
2458: 32,
4773: 32,
61: 32,
4196: 32,
4197: 32,
5619: 32,
1925: 32,
67: 31,
59: 31,
9426: 31,
9415: 31,
7247: 30,
89: 30,
3890: 30,
64: 30,
57: 29,
3029: 29,
71: 29,
1939: 28,
20232: 28,
66: 28,
2433: 28,
2699: 28,
2170: 28,
9247: 28,
56: 28,
93: 27,
4545: 27,
1324: 27,
7770: 27,
4713: 27,
2716: 27,
5600: 27,
4931: 26,
70: 26,
2578: 26,
2468: 26,
4710: 26,
2379: 26,
3999: 26,
2354: 26,
4550: 26,
2454: 25,
94: 25,
12132: 25,
6764: 25,
9246: 25,
7025: 25,
68: 25,
1979: 25,
2459: 25,
7019: 25,
5678: 24,
11020: 24,
3916: 24,
20226: 24,
81: 24,
4029: 24,
102: 24,
2633: 24,
72: 24,
2722: 24,
1380: 24,
900: 23,
69: 23,
127: 23,
9268: 23,
4449: 22,
8034: 22,
10345: 22,
19764: 22,
2285: 22,
74: 22,
4010: 22,
2315: 22,
65: 22,
10326: 22,
92: 22,
15621: 22,
1110: 22,
2090: 22,
3985: 22,
5557: 21,
2304: 21,
2001: 21,
9375: 21,
2720: 21,
4777: 21,
2598: 21,
2726: 21,
1993: 21,
210: 21,
5394: 21,
12275: 21,
1482: 20,
2628: 20,
88: 20,
2005: 20,
2010: 20,
7416: 20,
10331: 20,
97: 20,
78: 20,
14155: 20,
2265: 20,
73: 19,
3810: 19,
1112: 19,
4725: 19,
2180: 19,
5099: 19,
2631: 19,
12819: 19,
5614: 19,
7780: 19,
3304: 19,
349: 19,
4563: 19,
2664: 19,
3980: 19,
96: 19,
1985: 19,
12985: 19,
7034: 19,
1988: 19,
560: 19,
76: 19,
75: 19,
4789: 19,
4791: 19,
5114: 18,
4639: 18,
4629: 18,
2345: 18,
4004: 18,
6636: 18,
2230: 18,
85: 18,
98: 18,
1915: 18,
1105: 18,
2405: 18,
103: 18,
2587: 18,
2300: 18,
1460: 18,
2003: 18,
16780: 17,
2343: 17,
4724: 17,
2229: 17,
3769: 17,
2320: 17,
1905: 17,
107: 17,
7405: 17,
110: 17,
79: 17,
4005: 17,
1439: 17,
12980: 17,
2334: 17,
1964: 17,
2707: 17,
1394: 17,
4712: 17,
2414: 17,
77: 17,
2632: 16,
745: 16,
2427: 16,
2239: 16,
9725: 16,
2428: 16,
155: 16,
16785: 16,
1465: 16,
4060: 16,
4294: 16,
6631: 16,
3954: 16,
2609: 16,
2582: 16,
1085: 16,
3920: 16,
1730: 16,
82: 16,
190: 16,
2643: 16,
2644: 16,
12994: 16,
9412: 16,
84: 16,
2725: 16,
91: 16,
1169: 15,
2311: 15,
300: 15,
4715: 15,
2237: 15,
2466: 15,
4630: 15,
1999: 15,
2467: 15,
90: 15,
23829: 15,
19753: 15,
6641: 15,
550: 15,
2728: 15,
2325: 15,
2139: 15,
86: 15,
99: 15,
1940: 15,
1969: 15,
150: 15,
2234: 15,
2591: 15,
2645: 15,
2416: 15,
3854: 15,
141: 15,
22270: 15,
3918: 15,
5080: 15,
1254: 15,
159: 15,
2365: 15,
179: 15,
22474: 15,
4193: 15,
10321: 15,
1315: 14,
3625: 14,
1810: 14,
3586: 14,
192: 14,
4440: 14,
2471: 14,
1978: 14,
174: 14,
2409: 14,
120: 14,
119: 14,
310: 14,
116: 14,
2305: 14,
1125: 14,
3582: 14,
2309: 14,
2575: 14,
83: 14,
80: 14,
4019: 14,
4711: 14,
4023: 14,
2702: 14,
2008: 14,
611: 14,
2355: 14,
19752: 14,
2348: 14,
1375: 14,
254: 14,
1481: 14,
820: 14,
170: 14,
1450: 14,
2424: 14,
4834: 14,
1943: 13,
2418: 13,
101: 13,
1403: 13,
2080: 13,
4559: 13,
5770: 13,
11029: 13,
259: 13,
15430: 13,
3720: 13,
9411: 13,
2740: 13,
4300: 13,
359: 13,
4453: 13,
2337: 13,
6420: 13,
15435: 13,
95: 13,
113: 13,
2104: 13,
315: 13,
252: 13,
131: 13,
855: 13,
3305: 13,
1900: 13,
189: 13,
1115: 13,
1319: 13,
1983: 13,
4610: 13,
4615: 13,
111: 13,
2260: 13,
1910: 12,
251: 12,
9084: 12,
6645: 12,
7070: 12,
240: 12,
245: 12,
2165: 12,
10335: 12,
5560: 12,
267: 12,
2175: 12,
230: 12,
263: 12,
256: 12,
7778: 12,
2944: 12,
825: 12,
223: 12,
1398: 12,
270: 12,
1824: 12,
10344: 12,
5014: 12,
2360: 12,
7267: 12,
3170: 12,
169: 12,
4175: 12,
4189: 12,
100: 12,
12800: 12,
104: 12,
156: 12,
15610: 12,
112: 12,
640: 12,
151: 12,
2640: 12,
2425: 12,
714: 12,
3939: 12,
490: 12,
1275: 12,
465: 12,
12998: 12,
440: 12,
444: 12,
460: 12,
132: 12,
2410: 12,
1154: 12,
134: 12,
180: 12,
1615: 12,
559: 12,
4679: 12,
5075: 12,
585: 12,
2135: 12,
2464: 12,
2721: 12,
2349: 12,
5085: 12,
5090: 12,
2004: 12,
2700: 12,
2684: 11,
244: 11,
1095: 11,
1709: 11,
7791: 11,
475: 11,
4180: 11,
3994: 11,
5768: 11,
276: 11,
2075: 11,
249: 11,
130: 11,
4625: 11,
11707: 11,
12199: 11,
87: 11,
1259: 11,
1998: 11,
118: 11,
2535: 11,
4708: 11,
1364: 11,
4720: 11,
1175: 11,
305: 11,
3034: 11,
5025: 11,
1349: 11,
10508: 11,
1359: 11,
2012: 11,
2015: 11,
2544: 11,
2964: 11,
1270: 11,
2654: 11,
1458: 11,
1455: 11,
4445: 11,
4520: 11,
804: 11,
830: 11,
233: 11,
4254: 11,
5620: 11,
3185: 11,
161: 11,
164: 11,
5063: 11,
2144: 11,
7250: 11,
12701: 11,
1471: 11,
1463: 11,
12703: 11,
404: 11,
400: 11,
235: 11,
5595: 11,
1535: 11,
147: 11,
2138: 11,
280: 11,
4474: 11,
11730: 11,
5374: 11,
1444: 11,
449: 11,
239: 11,
5069: 11,
2108: 11,
6650: 10,
770: 10,
555: 10,
3005: 10,
3733: 10,
355: 10,
7246: 10,
354: 10,
3123: 10,
1788: 10,
3124: 10,
375: 10,
549: 10,
544: 10,
1619: 10,
606: 10,
298: 10,
7244: 10,
1545: 10,
414: 10,
3160: 10,
645: 10,
455: 10,
4554: 10,
2413: 10,
2270: 10,
1835: 10,
3060: 10,
1832: 10,
7775: 10,
1830: 10,
3058: 10,
2525: 10,
2375: 10,
395: 10,
7140: 10,
1691: 10,
429: 10,
4605: 10,
1823: 10,
12805: 10,
624: 10,
2475: 10,
620: 10,
3577: 10,
4500: 10,
1805: 10,
3749: 10,
5419: 10,
136: 10,
172: 10,
1156: 10,
269: 10,
1989: 10,
261: 10,
149: 10,
234: 10,
255: 10,
115: 10,
241: 10,
206: 10,
12128: 10,
9275: 10,
3929: 10,
4345: 10,
122: 10,
7876: 10,
123: 10,
2959: 10,
126: 10,
2930: 10,
266: 10,
9408: 10,
277: 10,
2034: 10,
202: 10,
5423: 10,
9410: 10,
1195: 10,
368: 9,
2149: 9,
5089: 9,
331: 9,
1079: 9,
3846: 9,
447: 9,
2100: 9,
138: 9,
140: 9,
1827: 9,
9269: 9,
5057: 9,
133: 9,
1965: 9,
5077: 9,
195: 9,
4340: 9,
4955: 9,
6763: 9,
670: 9,
2283: 9,
1440: 9,
1720: 9,
2942: 9,
198: 9,
2462: 9,
199: 9,
7248: 9,
1445: 9,
128: 9,
2652: 9,
2624: 9,
205: 9,
2494: 9,
216: 9,
7268: 9,
399: 9,
171: 9,
1478: 9,
173: 9,
16794: 9,
5104: 9,
1480: 9,
356: 9,
175: 9,
2236: 9,
357: 9,
1808: 9,
177: 9,
750: 9,
1475: 9,
765: 9,
4255: 9,
148: 9,
4919: 9,
4296: 9,
4245: 9,
2115: 9,
2114: 9,
222: 9,
3578: 9,
5410: 9,
659: 9,
4515: 9,
1514: 9,
1774: 9,
7274: 9,
246: 9,
1650: 9,
265: 9,
1686: 9,
9419: 9,
15624: 9,
4173: 9,
12811: 9,
297: 9,
4183: 9,
12812: 9,
5769: 9,
1244: 9,
125: 9,
264: 9,
4723: 9,
4721: 9,
629: 9,
2085: 9,
516: 9,
105: 9,
1365: 9,
9095: 9,
12203: 9,
4695: 9,
5309: 9,
5752: 9,
2995: 9,
580: 9,
2055: 9,
1200: 9,
4070: 9,
275: 9,
1230: 9,
3360: 9,
2560: 9,
6415: 9,
1370: 9,
4628: 9,
3744: 9,
904: 9,
15615: 9,
845: 9,
1100: 9,
114: 9,
109: 9,
9069: 9,
2520: 9,
9887: 9,
485: 9,
480: 9,
1405: 9,
2370: 9,
1111: 9,
17639: 9,
5670: 8,
3260: 8,
1005: 8,
2915: 8,
540: 8,
4134: 8,
3620: 8,
1190: 8,
1224: 8,
405: 8,
12220: 8,
3295: 8,
380: 8,
2289: 8,
534: 8,
3296: 8,
12325: 8,
385: 8,
184: 8,
1655: 8,
2095: 8,
15444: 8,
17045: 8,
994: 8,
2228: 8,
124: 8,
2224: 8,
17025: 8,
2739: 8,
388: 8,
2294: 8,
1000: 8,
17028: 8,
2225: 8,
5749: 8,
1120: 8,
4556: 8,
1950: 8,
154: 8,
4209: 8,
2110: 8,
4790: 8,
1116: 8,
2423: 8,
3905: 8,
1750: 8,
2637: 8,
2646: 8,
694: 8,
2084: 8,
106: 8,
3219: 8,
9259: 8,
1074: 8,
1285: 8,
158: 8,
2669: 8,
454: 8,
755: 8,
2660: 8,
1107: 8,
3998: 8,
15628: 8,
3245: 8,
642: 8,
4178: 8,
1525: 8,
2885: 8,
135: 8,
5390: 8,
6909: 8,
418: 8,
421: 8,
3921: 8,
658: 8,
915: 8,
160: 8,
1326: 8,
814: 8,
905: 8,
1825: 8,
201: 8,
301: 8,
3800: 8,
227: 8,
3790: 8,
4420: 8,
5053: 8,
22279: 8,
5058: 8,
1344: 8,
3725: 8,
209: 8,
296: 8,
215: 8,
1419: 8,
293: 8,
1920: 8,
2969: 8,
217: 8,
338: 8,
4936: 8,
6014: 8,
5076: 8,
7787: 8,
3090: 8,
281: 8,
6620: 8,
9079: 8,
211: 8,
884: 8,
3741: 8,
5051: 8,
4335: 8,
2329: 8,
1454: 8,
2538: 8,
3115: 8,
2550: 8,
7773: 8,
2548: 8,
200: 8,
910: 8,
370: 8,
253: 8,
7786: 7,
4415: 7,
484: 7,
7790: 7,
5795: 7,
317: 7,
486: 7,
7784: 7,
2960: 7,
7159: 7,
7399: 7,
2820: 7,
3054: 7,
17035: 7,
10381: 7,
8038: 7,
2524: 7,
655: 7,
473: 7,
1840: 7,
319: 7,
2659: 7,
9645: 7,
...},
'protocol_type': {'icmp': 2833545, 'tcp': 1870598, 'udp': 194288},
'service': {'ecr_i': 2811660,
'private': 1100831,
'http': 623091,
'smtp': 96554,
'other': 72653,
'domain_u': 57782,
'ftp_data': 40697,
'eco_i': 16338,
'finger': 6891,
'urp_i': 5378,
'ftp': 5214,
'telnet': 4277,
'ntp_u': 3833,
'auth': 3382,
'pop_3': 1981,
'time': 1579,
'domain': 1113,
'Z39_50': 1078,
'gopher': 1077,
'mtp': 1076,
'ssh': 1075,
'whois': 1073,
'remote_job': 1073,
'rje': 1070,
'link': 1069,
'imap4': 1069,
'ctf': 1068,
'name': 1067,
'supdup': 1060,
'discard': 1059,
'echo': 1059,
'nntp': 1059,
'uucp_path': 1057,
'sunrpc': 1056,
'netstat': 1056,
'daytime': 1056,
'systat': 1056,
'netbios_ssn': 1055,
'pop_2': 1055,
'netbios_ns': 1054,
'vmnet': 1053,
'sql_net': 1052,
'netbios_dgm': 1052,
'iso_tsap': 1052,
'shell': 1051,
'csnet_ns': 1051,
'klogin': 1050,
'hostnames': 1050,
'bgp': 1047,
'exec': 1045,
'printer': 1045,
'login': 1045,
'http_443': 1044,
'efs': 1042,
'ldap': 1041,
'uucp': 1041,
'kshell': 1040,
'nnsp': 1038,
'courier': 1021,
'IRC': 521,
'urh_i': 148,
'X11': 135,
'tim_i': 12,
'red_i': 9,
'pm_dump': 5,
'tftp_u': 3,
'harvest': 2,
'http_8001': 2,
'aol': 2,
'http_2784': 1},
'flag': {'SF': 3744328,
'S0': 869829,
'REJ': 268874,
'RSTR': 8094,
'RSTO': 5344,
'SH': 1040,
'S1': 532,
'S2': 161,
'RSTOS0': 122,
'OTH': 57,
'S3': 50},
'src_bytes': {1032: 2280245,
0: 1152546,
520: 527731,
105: 73899,
147: 27324,
146: 20311,
42: 10726,
8: 10481,
44: 9219,
145: 9218,
30: 8664,
46: 8200,
45: 7274,
216: 5947,
215: 5782,
209: 5730,
221: 5653,
224: 5638,
222: 5580,
208: 5569,
217: 5542,
232: 5500,
214: 5462,
235: 5423,
218: 5395,
220: 5347,
223: 5308,
230: 5282,
233: 5257,
229: 5238,
228: 5222,
219: 5190,
212: 5167,
225: 5161,
207: 5099,
234: 5093,
236: 5078,
226: 5073,
306: 4998,
227: 4976,
213: 4906,
211: 4858,
210: 4778,
231: 4598,
305: 4578,
237: 4574,
206: 4559,
205: 4522,
308: 4490,
297: 4269,
309: 4252,
245: 4219,
303: 4195,
204: 4177,
238: 4148,
43: 4142,
203: 4079,
48: 4061,
295: 4029,
200: 3933,
293: 3912,
304: 3904,
316: 3887,
294: 3880,
296: 3859,
307: 3837,
317: 3815,
239: 3793,
302: 3769,
301: 3747,
310: 3721,
315: 3699,
314: 3699,
322: 3673,
299: 3661,
201: 3658,
325: 3652,
298: 3612,
289: 3605,
241: 3596,
291: 3585,
300: 3571,
288: 3504,
324: 3489,
244: 3477,
323: 3439,
312: 3431,
292: 3429,
18: 3390,
319: 3381,
240: 3355,
321: 3345,
199: 3327,
202: 3326,
243: 3288,
192: 3267,
287: 3261,
320: 3248,
313: 3241,
242: 3199,
318: 3154,
311: 3101,
286: 3044,
290: 3012,
198: 3008,
33: 2971,
246: 2876,
327: 2868,
326: 2836,
334: 2832,
247: 2830,
285: 2786,
197: 2743,
1: 2729,
249: 2710,
196: 2614,
284: 2605,
331: 2597,
251: 2566,
328: 2558,
36: 2542,
333: 2542,
330: 2539,
248: 2525,
250: 2500,
252: 2497,
332: 2449,
183: 2441,
329: 2432,
281: 2401,
253: 2315,
182: 2296,
282: 2231,
336: 2207,
383: 2172,
283: 2154,
181: 2152,
54540: 2144,
280: 2120,
335: 2116,
193: 2112,
254: 2094,
338: 2053,
259: 2008,
276: 1988,
260: 1968,
279: 1944,
194: 1929,
258: 1928,
337: 1921,
10: 1910,
195: 1895,
255: 1894,
256: 1886,
339: 1882,
340: 1874,
278: 1860,
261: 1782,
257: 1772,
9: 1770,
34: 1689,
342: 1683,
190: 1677,
341: 1672,
262: 1652,
277: 1643,
263: 1579,
264: 1557,
748: 1538,
343: 1525,
274: 1504,
344: 1481,
275: 1472,
191: 1444,
567: 1416,
345: 1415,
272: 1392,
641: 1388,
59: 1387,
189: 1386,
265: 1374,
268: 1365,
270: 1338,
346: 1305,
347: 1293,
29: 1292,
273: 1265,
269: 1265,
32: 1265,
267: 1245,
352: 1201,
349: 1172,
266: 1171,
271: 1167,
350: 1153,
35: 1143,
188: 1142,
348: 1117,
28: 1065,
159: 1061,
7: 1046,
351: 1038,
160: 1030,
161: 1002,
163: 978,
31: 976,
187: 922,
164: 904,
185: 878,
186: 874,
162: 873,
353: 835,
151: 807,
172: 782,
355: 758,
354: 755,
184: 751,
165: 748,
144: 747,
358: 746,
167: 734,
158: 701,
179: 684,
178: 678,
175: 673,
356: 670,
157: 670,
180: 659,
171: 649,
148: 640,
177: 636,
357: 631,
168: 616,
170: 616,
373: 614,
174: 614,
166: 613,
173: 611,
740: 605,
169: 602,
6: 601,
38: 599,
155: 590,
176: 572,
152: 569,
374: 546,
359: 546,
516: 542,
149: 516,
143: 516,
360: 507,
363: 505,
156: 502,
364: 501,
361: 498,
153: 490,
154: 434,
368: 409,
17: 406,
362: 404,
369: 393,
88: 393,
37: 383,
365: 359,
366: 348,
142: 345,
371: 339,
965: 339,
370: 338,
1010: 335,
150: 335,
854: 330,
879: 327,
1030: 324,
372: 324,
960: 320,
884: 320,
1214: 318,
1470: 311,
367: 310,
852: 308,
1480: 307,
749: 302,
375: 298,
78: 296,
12: 296,
768: 295,
376: 294,
1363: 289,
1556: 287,
91: 285,
637: 285,
95: 284,
1199: 284,
14: 279,
607: 275,
1766: 273,
141: 272,
1690: 272,
1153: 270,
1699: 270,
1830: 268,
1342: 266,
1376: 265,
1339: 257,
19: 250,
1874: 248,
3468: 248,
377: 247,
7280: 247,
8325: 247,
3888: 247,
3690: 247,
6062: 246,
15377: 246,
7321: 246,
15876: 246,
7196: 246,
41: 246,
3909: 245,
4539: 245,
3775: 245,
7077: 245,
10389: 245,
9178: 245,
12324: 244,
4763: 244,
13239: 244,
6601: 244,
10044: 244,
12241: 243,
2890: 242,
10261: 242,
13: 241,
26408: 240,
35195: 240,
10073: 240,
12286: 240,
378: 239,
88382: 238,
15722: 236,
7940: 235,
9198: 235,
16787: 234,
10272: 234,
40: 234,
61298: 233,
2881: 233,
2056: 232,
12983: 232,
6932: 229,
4753: 227,
7162: 227,
2191: 226,
2194619: 226,
12165: 226,
4316: 226,
11376: 225,
5319: 225,
5891: 225,
5558: 225,
7422: 225,
8766: 225,
4892: 225,
5336: 225,
14052: 223,
52: 221,
40494: 218,
3676: 215,
380: 214,
9311: 213,
7233: 213,
8173: 213,
5929: 213,
8737: 213,
11: 212,
379: 212,
16115: 212,
7012: 211,
14189: 210,
24: 210,
39: 207,
71: 203,
554: 201,
495: 197,
5: 190,
102: 187,
47: 185,
387: 185,
388: 182,
381: 178,
382: 169,
26: 157,
491: 154,
86: 149,
140: 149,
104: 146,
110: 145,
100: 142,
389: 141,
384: 140,
113: 135,
111: 132,
175337: 126,
832: 125,
501760: 125,
940: 123,
385: 122,
890: 118,
801: 117,
22: 117,
926: 117,
386: 115,
938: 115,
859: 113,
918: 112,
802: 112,
849: 111,
821: 110,
877: 109,
394: 109,
89: 109,
64: 109,
956: 108,
947: 108,
74: 108,
882: 107,
861: 107,
865: 106,
1194: 106,
937: 105,
963: 105,
756: 105,
724: 105,
800: 104,
911: 104,
878: 104,
887: 103,
881: 103,
840: 103,
834: 103,
949: 103,
722: 102,
843: 102,
880: 102,
396: 102,
893: 102,
944: 102,
390: 101,
401: 101,
751: 101,
760: 101,
803: 101,
916: 101,
1000: 100,
889: 100,
888: 100,
885: 99,
932: 98,
931: 98,
1208: 98,
804: 98,
833: 98,
841: 98,
903: 98,
828: 98,
1109: 98,
900: 97,
393: 97,
827: 97,
934: 97,
946: 97,
933: 97,
875: 97,
904: 97,
936: 97,
939: 97,
49: 97,
790: 96,
876: 96,
788: 96,
919: 96,
1006: 96,
391: 96,
1058: 96,
767: 96,
764: 96,
53: 96,
87: 96,
807: 95,
1171: 95,
986: 95,
810: 95,
871: 95,
766: 95,
978: 95,
941: 94,
907: 94,
753: 94,
708: 94,
929: 94,
920: 94,
805: 93,
798: 93,
1206: 93,
837: 93,
850: 93,
909: 93,
990: 93,
704: 92,
754: 92,
725: 92,
862: 92,
781: 92,
1116: 92,
763: 92,
999: 92,
948: 92,
772: 91,
945: 91,
908: 91,
723: 91,
770: 91,
883: 91,
792: 91,
797: 91,
1031: 91,
814: 91,
1081: 91,
964: 91,
856: 91,
20: 91,
988: 91,
1033: 90,
818: 90,
910: 90,
906: 90,
728: 89,
771: 89,
902: 89,
1186: 89,
1183: 89,
831: 89,
860: 89,
733: 89,
846: 89,
847: 89,
1044: 89,
895: 89,
409: 89,
1034: 89,
915: 89,
928: 89,
953: 89,
874: 89,
870: 89,
1018: 89,
973: 89,
950: 88,
914: 88,
758: 88,
1174: 88,
905: 88,
1141: 88,
829: 88,
923: 88,
897: 88,
959: 88,
784: 88,
1222: 88,
892: 88,
987: 87,
1195: 87,
858: 87,
1188: 87,
966: 87,
975: 87,
398: 87,
1187: 87,
785: 87,
735: 87,
1176: 87,
1022: 87,
1074: 87,
886: 87,
809: 87,
759: 87,
851: 87,
773: 87,
825: 87,
815: 87,
1067: 87,
891: 86,
1042: 86,
738: 86,
63: 86,
989: 86,
1083: 86,
951: 86,
1189: 86,
1102: 86,
1015: 86,
718: 86,
1009: 86,
791: 85,
848: 85,
873: 85,
839: 85,
957: 85,
974: 85,
126: 85,
1132: 85,
1001: 85,
935: 85,
983: 85,
925: 85,
977: 85,
705: 84,
776: 84,
1046: 84,
952: 84,
868: 84,
961: 84,
817: 84,
998: 84,
1196: 84,
761: 84,
981: 84,
721: 84,
899: 84,
997: 84,
835: 84,
675: 84,
838: 83,
795: 83,
853: 83,
1184: 83,
1003: 83,
1005: 83,
712: 83,
845: 83,
930: 83,
1216: 83,
922: 83,
717: 83,
779: 82,
896: 82,
1117: 82,
898: 82,
66: 82,
984: 82,
715: 82,
1179: 82,
1207: 82,
1024: 82,
1232: 82,
962: 82,
1143: 82,
867: 82,
1008: 81,
1054: 81,
1039: 81,
1129: 81,
1055: 81,
1047: 81,
787: 81,
1173: 81,
954: 81,
739: 81,
762: 81,
912: 81,
1218: 81,
774: 81,
991: 81,
826: 81,
958: 81,
972: 81,
1077: 80,
1217: 80,
1181: 80,
1155: 80,
1170: 80,
392: 80,
1210: 80,
745: 80,
968: 80,
703: 80,
942: 80,
690: 80,
697: 80,
921: 80,
970: 80,
979: 80,
744: 80,
1012: 80,
917: 80,
811: 80,
741: 80,
816: 80,
820: 80,
752: 80,
863: 80,
780: 80,
943: 79,
1064: 79,
1191: 79,
1185: 79,
955: 79,
1093: 79,
1007: 79,
1028: 79,
1041: 79,
1105: 79,
855: 79,
967: 79,
702: 79,
765: 79,
844: 79,
736: 79,
786: 79,
783: 79,
746: 79,
812: 79,
1178: 78,
1086: 78,
694: 78,
1241: 78,
1053: 78,
924: 78,
1079: 78,
1233: 78,
1204: 78,
796: 78,
688: 78,
1245: 78,
1107: 78,
1131: 78,
1112: 78,
726: 78,
727: 78,
1124: 78,
996: 78,
995: 78,
913: 77,
1139: 77,
1133: 77,
1036: 77,
698: 77,
1076: 77,
1294: 77,
680: 77,
1242: 77,
1113: 77,
1011: 77,
1180: 77,
869: 77,
1175: 77,
1254: 77,
794: 77,
1160: 77,
711: 76,
1224: 76,
901: 76,
706: 76,
927: 76,
1060: 76,
1262: 76,
1284: 76,
982: 76,
1213: 76,
650: 76,
1146: 76,
731: 76,
1192: 76,
1103: 76,
1056: 75,
1266: 75,
1013: 75,
1095: 75,
793: 75,
1002: 75,
864: 75,
1168: 75,
1281: 75,
1148: 75,
673: 75,
976: 75,
1190: 75,
97: 75,
750: 75,
1202: 75,
729: 75,
1050: 75,
1043: 75,
1205: 75,
1203: 75,
1236: 75,
1265: 75,
1252: 74,
1075: 74,
1255: 74,
1169: 74,
1238: 74,
1037: 74,
1104: 74,
1209: 74,
1091: 74,
667: 74,
1147: 74,
1082: 74,
1062: 74,
1061: 74,
1123: 74,
730: 74,
757: 74,
737: 74,
819: 74,
755: 74,
743: 74,
842: 73,
400: 73,
1240: 73,
985: 73,
1237: 73,
777: 73,
866: 73,
439: 73,
692: 73,
1228: 73,
980: 73,
830: 73,
1122: 73,
857: 73,
1065: 73,
1057: 73,
823: 72,
1275: 72,
1149: 72,
732: 72,
1087: 72,
1128: 72,
769: 72,
1142: 72,
1014: 72,
813: 72,
1094: 72,
700: 72,
720: 72,
1140: 72,
1137: 72,
1215: 72,
1371: 72,
1130: 72,
701: 72,
1230: 72,
971: 72,
695: 72,
1264: 72,
92: 71,
707: 71,
1045: 71,
1158: 71,
1496: 71,
1023: 71,
685: 71,
80: 71,
1172: 71,
139: 71,
678: 71,
836: 71,
1127: 71,
775: 71,
1277: 71,
652: 70,
1035: 70,
1099: 70,
1333: 70,
1038: 70,
1229: 70,
1261: 70,
696: 70,
1351: 70,
808: 70,
1136: 70,
799: 70,
710: 70,
1068: 70,
742: 70,
1405: 70,
719: 70,
666: 70,
1134: 70,
1144: 70,
1467: 70,
1026: 70,
1246: 70,
992: 70,
1247: 70,
824: 70,
1308: 69,
1070: 69,
1223: 69,
822: 69,
1052: 69,
1029: 69,
1125: 69,
872: 69,
1407: 69,
1059: 69,
1428: 69,
789: 69,
1089: 69,
1200: 69,
1301: 69,
683: 69,
894: 69,
1167: 69,
1156: 69,
1020: 69,
1114: 69,
1193: 68,
1197: 68,
1110: 68,
1182: 68,
734: 68,
395: 68,
1084: 68,
103: 68,
806: 68,
682: 68,
1025: 68,
1446: 68,
1270: 68,
1115: 68,
638: 68,
687: 68,
1019: 68,
1291: 68,
671: 68,
1268: 68,
1239: 68,
1326: 68,
1231: 68,
1225: 68,
1135: 68,
1383: 68,
1138: 68,
1267: 68,
782: 67,
1327: 67,
1437: 67,
1100: 67,
1357: 67,
677: 67,
1211: 67,
681: 67,
1258: 67,
1004: 67,
1243: 67,
397: 67,
1078: 67,
1121: 67,
1226: 67,
1051: 67,
1069: 67,
1502: 67,
714: 67,
1212: 67,
1120: 67,
1106: 66,
1145: 66,
709: 66,
1027: 66,
1340: 66,
670: 66,
644: 66,
1287: 66,
1372: 66,
658: 66,
686: 66,
689: 66,
1021: 66,
1335: 66,
1414: 66,
1392: 66,
1072: 66,
1501: 65,
1283: 65,
1435: 65,
1088: 65,
1162: 65,
1285: 65,
1073: 65,
1234: 65,
1098: 65,
404: 65,
1473: 65,
51: 65,
1101: 65,
1397: 64,
...},
'dst_bytes': {0: 4064854,
105: 44713,
147: 24910,
146: 22536,
145: 9500,
42: 9242,
330: 8335,
331: 7690,
329: 7650,
332: 7264,
328: 6852,
327: 6134,
333: 6014,
334: 5560,
46: 5142,
335: 4030,
48: 3914,
326: 3582,
336: 3551,
337: 3445,
2698: 3109,
1380: 2732,
1075: 2507,
2239: 2487,
3222: 2481,
2507: 2470,
44: 2426,
325: 2204,
8314: 2136,
338: 2104,
392: 2082,
313: 2062,
255: 1768,
324: 1763,
280: 1742,
370: 1692,
365: 1687,
406: 1681,
397: 1675,
261: 1600,
285: 1540,
130: 1334,
398: 1304,
294: 1271,
296: 1242,
283: 1227,
115: 1212,
339: 1206,
284: 1203,
362: 1166,
269: 1148,
131: 1146,
310: 1135,
321: 1135,
45: 1128,
369: 1104,
354: 1084,
281: 1065,
4: 1061,
366: 1056,
307: 1054,
279: 1053,
788: 1050,
128: 1038,
301: 1031,
608: 1028,
308: 1021,
774: 1010,
622: 982,
282: 979,
367: 969,
364: 957,
1425: 957,
263: 956,
110: 933,
762: 932,
1719: 922,
753: 889,
132: 889,
259: 881,
188: 878,
1227: 874,
253: 870,
511: 866,
267: 858,
434: 853,
133: 844,
114: 826,
274: 820,
458: 799,
368: 791,
2445: 782,
2531: 780,
258: 779,
1484: 763,
312: 761,
3200: 759,
129: 755,
468: 753,
1856: 752,
480: 733,
363: 733,
113: 733,
38: 732,
293: 731,
134: 726,
396: 723,
278: 721,
135: 720,
1415: 715,
1721: 714,
405: 713,
138: 713,
1695: 712,
290: 705,
1600: 705,
260: 702,
30: 700,
1875: 695,
2431: 692,
318: 689,
12884: 686,
111: 679,
43: 677,
1718: 673,
12922: 672,
1680: 672,
340: 671,
323: 670,
136: 670,
1481: 670,
607: 666,
1694: 657,
1645: 654,
127: 651,
1651: 649,
1408: 649,
770: 648,
421: 636,
1215: 635,
315: 633,
885: 631,
488: 629,
771: 628,
7333: 628,
389: 624,
37: 623,
659: 620,
453: 620,
454: 620,
1211: 616,
303: 614,
2446: 611,
765: 608,
525: 608,
342: 606,
88: 605,
482: 603,
1423: 599,
1108: 598,
361: 594,
1483: 590,
431: 589,
1404: 587,
1451: 587,
391: 586,
108: 581,
137: 577,
810: 573,
309: 568,
4841: 566,
39: 561,
314: 560,
412: 558,
882: 554,
139: 552,
388: 550,
34: 548,
372: 548,
343: 544,
112: 544,
379: 543,
272: 542,
383: 541,
306: 540,
341: 536,
1395: 533,
757: 532,
1247: 531,
295: 530,
275: 530,
955: 523,
1158: 523,
449: 518,
356: 514,
373: 512,
126: 512,
751: 511,
75: 511,
1471: 503,
375: 503,
371: 501,
462: 500,
1461: 500,
807: 499,
270: 498,
767: 490,
36: 487,
2251: 486,
316: 485,
1112: 483,
9284: 478,
481: 477,
277: 475,
140: 472,
403: 469,
1931: 468,
2543: 467,
402: 467,
584: 466,
117: 466,
382: 466,
101: 464,
1587: 463,
654: 461,
597: 459,
276: 457,
626: 456,
498: 456,
193: 455,
759: 455,
415: 454,
304: 451,
1630: 450,
5280: 449,
455: 446,
288: 441,
70: 441,
1511: 440,
471: 440,
755: 440,
273: 439,
1065: 439,
619: 437,
302: 437,
934: 436,
374: 436,
1197: 436,
409: 432,
390: 432,
91: 430,
347: 427,
784: 427,
7203: 427,
5790: 426,
1374: 426,
394: 422,
2280: 422,
74: 421,
940: 419,
6534: 418,
94: 417,
345: 417,
422: 415,
360: 415,
1274: 414,
944: 414,
25519: 413,
1054: 412,
761: 411,
420: 411,
124: 410,
526: 410,
1701: 408,
256: 407,
24572: 406,
535: 405,
7355: 404,
1529: 403,
1745: 403,
484: 402,
924: 401,
189: 401,
891: 401,
292: 400,
73: 400,
660: 399,
5989: 397,
410: 397,
466: 395,
633: 394,
492: 393,
1660: 393,
387: 390,
266: 388,
440: 388,
707: 388,
1342: 387,
6356: 387,
299: 382,
575: 381,
671: 380,
1046: 378,
1896: 378,
667: 377,
475: 377,
76: 377,
305: 376,
376: 376,
1214: 375,
1263: 374,
71: 373,
1109: 372,
1565: 372,
95: 371,
1364: 371,
835: 371,
385: 370,
404: 370,
141: 368,
520: 368,
495: 367,
515: 366,
322: 365,
1035: 364,
1918: 364,
1512: 362,
248: 361,
4624: 361,
401: 361,
872: 360,
426: 359,
616: 359,
486: 359,
573: 359,
1564: 357,
1069: 352,
2367: 352,
2996: 352,
4137: 351,
1973: 349,
349: 349,
125: 349,
35: 348,
1576: 348,
760: 348,
1043: 347,
185: 347,
588: 346,
400: 346,
1588: 346,
89: 343,
1792: 343,
1761: 343,
997: 343,
289: 339,
2077: 339,
1337: 338,
182: 338,
359: 338,
77: 337,
2006: 337,
17: 336,
516: 336,
4073: 336,
655: 334,
984: 333,
594: 332,
384: 331,
1063: 330,
483: 330,
1610: 330,
1528: 330,
451: 329,
1024: 328,
1248: 328,
2313: 328,
930: 327,
350: 327,
478: 326,
1212: 325,
438: 325,
72: 324,
497: 324,
238: 323,
386: 322,
1738: 322,
602: 321,
791: 321,
411: 320,
3211: 319,
424: 319,
1233: 318,
8422: 316,
1713: 316,
1705: 316,
758: 314,
107: 314,
2408: 314,
695: 314,
377: 314,
903: 313,
442: 312,
1722: 311,
346: 311,
1159: 309,
1509: 307,
1040: 306,
7886: 306,
2536: 305,
287: 303,
430: 303,
2720: 301,
546: 301,
93: 300,
7384: 300,
4152: 299,
741: 298,
268: 296,
1585: 295,
297: 295,
271: 294,
1072: 293,
2241: 293,
581: 293,
1769: 292,
3081: 291,
893: 290,
736: 290,
764: 289,
1053: 289,
418: 288,
491: 288,
300: 288,
674: 288,
798: 287,
5381: 287,
943: 284,
1249: 284,
682: 282,
439: 282,
756: 281,
1819: 281,
2168: 281,
2586: 280,
702: 280,
320: 279,
1410: 279,
1925: 278,
3675: 278,
1541: 277,
181: 277,
501: 277,
408: 276,
2649: 275,
506: 275,
1800: 275,
745: 275,
2055: 271,
78: 271,
9986: 268,
744: 268,
109: 267,
435: 267,
2486: 266,
286: 264,
380: 263,
614: 262,
399: 262,
2402: 261,
1617: 260,
1047: 260,
1492: 259,
413: 259,
928: 259,
1187: 259,
598: 258,
685: 258,
6924: 258,
311: 258,
170: 257,
912: 257,
609: 257,
579: 255,
443: 255,
92: 255,
5200: 254,
2005: 254,
1767: 253,
2688: 253,
358: 252,
1359: 251,
118: 251,
414: 251,
417: 250,
171: 250,
3380: 250,
754: 249,
1039: 249,
960: 248,
768: 247,
2143: 247,
809: 247,
1088: 247,
668: 246,
1400: 246,
447: 245,
2302: 245,
998: 244,
250: 243,
870: 243,
1193: 242,
187: 242,
1691: 242,
540: 241,
613: 241,
378: 240,
2568: 240,
703: 240,
247: 240,
978: 239,
423: 237,
531: 237,
617: 237,
395: 237,
868: 236,
3253: 236,
769: 235,
1376: 235,
1817: 235,
450: 235,
920: 235,
479: 234,
2750: 234,
589: 234,
1295: 233,
2090: 232,
393: 231,
731: 231,
142: 231,
119: 230,
1357: 230,
407: 230,
821: 229,
79: 228,
636: 227,
595: 227,
457: 226,
32: 226,
353: 226,
2042: 225,
494: 225,
1270: 225,
1650: 224,
662: 224,
2265: 222,
436: 222,
1362: 222,
437: 221,
1010: 221,
664: 221,
236: 220,
6329: 220,
2483: 220,
477: 219,
298: 219,
2714: 219,
560: 218,
14496: 218,
80: 218,
935: 217,
527: 217,
811: 217,
4823: 217,
828: 216,
240: 216,
317: 216,
873: 216,
223: 216,
3248: 215,
496: 215,
29: 215,
381: 214,
1078: 213,
1319: 213,
700: 213,
3413: 213,
452: 213,
183: 213,
10378: 212,
566: 212,
1042: 212,
3433: 211,
776: 211,
2474: 210,
1281: 210,
857: 210,
1416: 210,
445: 210,
2825: 210,
555: 209,
670: 209,
2043: 209,
658: 209,
1195: 209,
2809: 208,
799: 208,
2071: 208,
180: 208,
1259: 208,
246: 208,
2226: 207,
474: 207,
33: 207,
3731: 206,
100: 206,
983: 205,
4097: 205,
772: 205,
351: 204,
1246: 204,
808: 204,
706: 203,
2325: 203,
1269: 203,
1905: 202,
175: 202,
839: 202,
69: 202,
1384: 201,
446: 201,
4556: 200,
604: 200,
1125: 200,
564: 200,
1007: 200,
976: 199,
1491: 199,
344: 199,
942: 198,
291: 198,
1366: 198,
864: 197,
1155: 197,
441: 197,
2658: 196,
578: 196,
9534: 196,
646: 196,
500: 196,
2488: 196,
490: 196,
933: 195,
1335: 195,
749: 195,
173: 194,
766: 194,
2013: 194,
4768: 193,
2126: 192,
178: 192,
574: 192,
911: 192,
504: 192,
1432: 192,
2073: 192,
1344: 191,
1099: 191,
2015: 191,
1735: 190,
1487: 190,
1538: 190,
2229: 189,
888: 189,
3313: 188,
1160: 188,
528: 187,
82: 187,
476: 187,
773: 187,
179: 187,
4894: 186,
460: 186,
172: 185,
473: 185,
910: 185,
556: 185,
487: 185,
4061: 184,
1256: 184,
716: 183,
1230: 183,
3712: 183,
510: 182,
143: 182,
3073: 182,
2648: 182,
1026: 181,
923: 181,
2120: 180,
2596: 180,
2762: 180,
2125: 180,
824: 179,
732: 179,
9317: 179,
1164: 179,
254: 178,
3867: 178,
5369: 178,
176: 178,
1092: 178,
863: 178,
1394: 178,
12161: 178,
3276: 177,
433: 177,
849: 177,
687: 176,
1030: 176,
2592: 176,
1707: 176,
752: 176,
41: 175,
2113: 175,
3127: 175,
1000: 175,
1472: 175,
2129: 174,
1433: 174,
1808: 174,
225: 174,
11485: 174,
1828: 174,
35215: 173,
461: 173,
1820: 173,
691: 172,
937: 172,
22780: 172,
1752: 172,
2816: 172,
1674: 171,
1287: 171,
432: 171,
1434: 171,
262: 170,
1032: 170,
1074: 170,
663: 170,
644: 170,
2109: 170,
1409: 170,
1459: 169,
887: 169,
3432: 169,
665: 169,
709: 169,
1411: 169,
2662: 169,
1378: 169,
2999: 169,
538: 169,
1240: 168,
87: 168,
986: 168,
642: 168,
728: 168,
1596: 167,
456: 167,
174: 167,
1244: 167,
1271: 167,
1056: 167,
901: 167,
657: 167,
946: 167,
352: 167,
1262: 167,
3040: 166,
186: 166,
1791: 166,
1044: 166,
120: 165,
6250: 165,
529: 165,
1307: 165,
640: 164,
580: 164,
3451: 164,
122: 164,
3410: 164,
571: 164,
224: 164,
9743: 164,
464: 163,
1390: 163,
264: 163,
834: 163,
1175: 162,
1737: 162,
508: 162,
1952: 162,
1356: 162,
2650: 162,
2904: 161,
11889: 161,
656: 161,
1556: 161,
116: 161,
777: 161,
783: 161,
677: 161,
2288: 161,
3267: 160,
804: 160,
572: 160,
1308: 160,
489: 160,
10861: 160,
1496: 160,
9287: 160,
618: 160,
1049: 159,
606: 159,
2873: 159,
612: 159,
16617: 159,
8159: 158,
999: 158,
620: 158,
782: 158,
1223: 158,
648: 158,
750: 158,
545: 157,
357: 157,
2631: 157,
917: 157,
748: 157,
2019: 157,
8222: 157,
7273: 156,
593: 156,
237: 156,
1402: 156,
819: 156,
797: 156,
1619: 156,
993: 156,
715: 156,
24: 156,
2833: 155,
5320: 155,
844: 155,
3550: 155,
550: 155,
5480: 154,
96: 154,
3198: 154,
1724: 154,
244: 154,
14515: 154,
1991: 154,
1314: 153,
5260: 153,
86: 153,
2097: 153,
3101: 153,
1025: 152,
833: 152,
1399: 152,
1762: 152,
4580: 152,
846: 152,
522: 152,
5336: 151,
1885: 151,
40: 151,
499: 151,
1041: 151,
931: 151,
1389: 151,
585: 151,
812: 151,
1628: 150,
2459: 149,
429: 149,
1462: 149,
265: 148,
521: 148,
1288: 147,
1540: 147,
775: 147,
557: 147,
1062: 147,
1463: 147,
559: 146,
628: 146,
1370: 146,
1179: 146,
17905: 146,
1349: 146,
2449: 146,
1579: 146,
2063: 145,
1811: 145,
1398: 145,
4145: 145,
1066: 145,
820: 145,
81: 144,
673: 144,
2354: 144,
3112: 144,
4359: 144,
123: 144,
1382: 144,
1283: 143,
31: 143,
722: 143,
2056: 143,
763: 143,
222: 142,
567: 142,
724: 142,
1413: 142,
2701: 142,
241: 142,
1178: 142,
1126: 141,
1419: 141,
12471: 141,
1185: 140,
513: 140,
2169: 140,
638: 140,
1020: 140,
669: 140,
1976: 140,
249: 140,
601: 139,
1322: 139,
3231: 139,
1086: 139,
13599: 139,
848: 139,
950: 139,
841: 138,
1397: 138,
858: 138,
719: 138,
2997: 138,
517: 138,
121: 138,
469: 138,
1315: 137,
502: 137,
1018: 137,
2066: 137,
3048: 137,
16904: 137,
428: 137,
530: 137,
459: 137,
686: 136,
198: 136,
467: 136,
1391: 136,
1405: 136,
746: 136,
1581: 135,
485: 135,
1003: 135,
816: 135,
4815: 135,
2794: 134,
2451: 134,
600: 134,
867: 134,
544: 134,
38299: 134,
1664: 134,
2119: 134,
1396: 134,
1911: 133,
18275: 133,
472: 133,
856: 133,
734: 133,
245: 133,
1231: 133,
897: 133,
221: 133,
961: 133,
1726: 132,
1257: 132,
1296: 132,
416: 132,
319: 132,
...},
'land': {0: 4898403, 1: 28},
'wrong_fragment': {0: 4897193, 3: 970, 1: 268},
'urgent': {0: 4898415, 1: 9, 2: 4, 14: 1, 5: 1, 3: 1},
'hot': {0: 4890163,
2: 2647,
1: 1393,
4: 942,
6: 868,
5: 339,
19: 281,
30: 281,
28: 279,
14: 270,
18: 269,
22: 255,
24: 249,
3: 88,
7: 27,
20: 17,
9: 11,
15: 8,
11: 7,
17: 7,
10: 5,
12: 4,
13: 4,
21: 4,
16: 4,
8: 3,
44: 2,
25: 2,
33: 1,
77: 1},
'num_failed_logins': {0: 4898306, 1: 107, 2: 9, 3: 5, 4: 3, 5: 1},
'logged_in': {0: 4195364, 1: 703067},
'num_compromised': {0: 4895552,
1: 2369,
2: 153,
3: 78,
4: 68,
5: 29,
6: 27,
7: 12,
8: 8,
9: 7,
13: 7,
18: 6,
11: 6,
10: 5,
12: 5,
17: 4,
16: 4,
14: 3,
21: 3,
23: 3,
884: 2,
151: 2,
371: 2,
31: 2,
166: 1,
94: 1,
75: 1,
78: 1,
83: 1,
110: 1,
102: 1,
107: 1,
64: 1,
121: 1,
157: 1,
74: 1,
27: 1,
54: 1,
46: 1,
44: 1,
41: 1,
40: 1,
38: 1,
37: 1,
29: 1,
175: 1,
22: 1,
19: 1,
15: 1,
174: 1,
7479: 1,
1739: 1,
676: 1,
457: 1,
462: 1,
520: 1,
537: 1,
538: 1,
543: 1,
558: 1,
568: 1,
622: 1,
682: 1,
452: 1,
691: 1,
716: 1,
751: 1,
756: 1,
761: 1,
767: 1,
789: 1,
809: 1,
1043: 1,
456: 1,
435: 1,
187: 1,
270: 1,
193: 1,
198: 1,
202: 1,
217: 1,
237: 1,
238: 1,
247: 1,
254: 1,
258: 1,
275: 1,
407: 1,
281: 1,
307: 1,
345: 1,
349: 1,
373: 1,
375: 1,
378: 1,
394: 1,
405: 1,
177: 1},
'root_shell': {0: 4898097, 1: 334},
'su_attempted': {0: 4898321, 2: 70, 1: 40},
'num_root': {0: 4892729,
1: 2411,
9: 1493,
6: 1238,
5: 224,
2: 152,
4: 67,
3: 17,
10: 5,
7: 3,
8: 3,
22: 2,
421: 2,
36: 2,
26: 2,
39: 2,
11: 2,
857: 2,
16: 1,
91: 1,
191: 1,
190: 1,
187: 1,
184: 1,
179: 1,
151: 1,
146: 1,
123: 1,
121: 1,
119: 1,
104: 1,
100: 1,
74: 1,
77: 1,
17: 1,
71: 1,
55: 1,
54: 1,
47: 1,
41: 1,
40: 1,
204: 1,
38: 1,
28: 1,
12: 1,
14: 1,
195: 1,
7468: 1,
206: 1,
505: 1,
512: 1,
572: 1,
605: 1,
610: 1,
611: 1,
626: 1,
629: 1,
684: 1,
749: 1,
754: 1,
766: 1,
789: 1,
841: 1,
849: 1,
867: 1,
889: 1,
975: 1,
993: 1,
1045: 1,
508: 1,
502: 1,
1743: 1,
480: 1,
222: 1,
247: 1,
261: 1,
268: 1,
278: 1,
287: 1,
289: 1,
290: 1,
306: 1,
338: 1,
387: 1,
390: 1,
402: 1,
416: 1,
417: 1,
425: 1,
439: 1,
446: 1,
450: 1,
218: 1},
'num_file_creations': {0: 4896079,
1: 1792,
2: 359,
4: 15,
17: 13,
12: 10,
14: 10,
13: 9,
20: 9,
16: 8,
8: 8,
15: 8,
10: 8,
18: 8,
11: 8,
5: 7,
9: 7,
19: 6,
3: 6,
23: 6,
26: 5,
25: 5,
22: 4,
7: 4,
28: 4,
6: 3,
35: 3,
40: 3,
32: 3,
34: 3,
27: 3,
29: 3,
36: 2,
21: 2,
31: 1,
33: 1,
41: 1,
24: 1,
37: 1,
38: 1,
30: 1,
43: 1},
'num_shells': {0: 4898072, 1: 354, 2: 5},
'num_access_files': {0: 4893768,
1: 4429,
2: 197,
5: 9,
4: 9,
3: 9,
6: 4,
8: 3,
7: 2,
9: 1},
'is_hot_login': {0: 4898429, 1: 2},
'is_guest_login': {0: 4894340, 1: 4091},
'count': {511: 2276994,
1: 383272,
510: 267314,
2: 101964,
509: 56022,
3: 55314,
4: 48161,
5: 41027,
6: 36301,
7: 33077,
8: 28678,
9: 25975,
10: 24279,
11: 22617,
12: 20539,
13: 18641,
14: 16403,
15: 14699,
508: 14487,
16: 13485,
17: 12252,
18: 10978,
19: 9572,
449: 9168,
103: 8864,
102: 8861,
104: 8855,
105: 8845,
107: 8838,
106: 8834,
108: 8828,
109: 8817,
101: 8814,
110: 8801,
111: 8797,
112: 8781,
113: 8776,
114: 8767,
115: 8762,
119: 8755,
117: 8754,
118: 8754,
116: 8752,
123: 8745,
120: 8745,
121: 8739,
122: 8732,
124: 8730,
125: 8729,
126: 8705,
127: 8701,
128: 8676,
129: 8673,
130: 8656,
131: 8649,
132: 8622,
133: 8606,
134: 8585,
20: 8583,
135: 8576,
136: 8539,
137: 8512,
138: 8475,
139: 8442,
140: 8388,
141: 8342,
142: 8279,
451: 8256,
143: 8198,
480: 8009,
478: 7959,
144: 7939,
21: 7869,
145: 7610,
146: 7452,
147: 7334,
148: 7193,
482: 7106,
22: 7087,
149: 7012,
453: 6964,
481: 6598,
23: 6588,
203: 6218,
204: 6215,
202: 6212,
205: 6203,
206: 6198,
207: 6184,
208: 6181,
201: 6178,
209: 6163,
210: 6158,
211: 6149,
212: 6143,
213: 6137,
214: 6131,
456: 6125,
215: 6119,
216: 6118,
217: 6110,
218: 6105,
24: 6092,
219: 6092,
220: 6088,
221: 6071,
222: 6068,
223: 6055,
224: 6050,
225: 6037,
226: 6034,
227: 6024,
228: 6020,
229: 6012,
230: 6010,
231: 6002,
232: 6001,
233: 5989,
234: 5985,
450: 5978,
235: 5975,
236: 5973,
237: 5958,
238: 5956,
239: 5949,
240: 5949,
241: 5937,
242: 5933,
243: 5914,
244: 5908,
447: 5900,
245: 5897,
246: 5889,
247: 5873,
446: 5872,
248: 5870,
249: 5847,
250: 5843,
251: 5823,
252: 5823,
253: 5806,
254: 5802,
255: 5789,
256: 5785,
257: 5765,
258: 5760,
259: 5743,
260: 5739,
458: 5719,
261: 5712,
262: 5702,
457: 5696,
263: 5686,
264: 5679,
265: 5655,
266: 5649,
267: 5632,
268: 5628,
269: 5602,
270: 5596,
271: 5577,
272: 5574,
273: 5533,
274: 5530,
275: 5506,
276: 5497,
277: 5462,
150: 5460,
278: 5452,
25: 5445,
507: 5441,
279: 5422,
280: 5419,
281: 5368,
282: 5364,
283: 5315,
284: 5305,
285: 5218,
286: 5210,
452: 5130,
287: 5063,
288: 5037,
26: 5026,
289: 4860,
290: 4855,
291: 4765,
292: 4745,
293: 4643,
294: 4616,
27: 4600,
477: 4589,
476: 4571,
295: 4526,
445: 4514,
296: 4508,
297: 4323,
298: 4284,
454: 4271,
479: 4153,
28: 4148,
461: 3933,
448: 3699,
29: 3606,
463: 3498,
30: 3365,
484: 3283,
444: 3227,
299: 3116,
31: 3109,
32: 2960,
100: 2940,
300: 2898,
486: 2814,
33: 2757,
443: 2690,
441: 2684,
436: 2638,
200: 2563,
460: 2540,
459: 2530,
34: 2436,
199: 2392,
483: 2304,
35: 2295,
442: 2256,
439: 2229,
475: 2183,
464: 2120,
462: 2101,
36: 2099,
455: 2051,
37: 1779,
99: 1761,
473: 1697,
466: 1666,
38: 1652,
98: 1626,
438: 1601,
506: 1583,
39: 1526,
97: 1526,
198: 1502,
197: 1475,
96: 1428,
40: 1404,
504: 1393,
491: 1374,
487: 1363,
196: 1354,
485: 1352,
195: 1347,
434: 1319,
95: 1301,
194: 1282,
193: 1262,
41: 1246,
474: 1231,
472: 1220,
467: 1205,
192: 1189,
191: 1178,
190: 1120,
189: 1119,
42: 1068,
94: 1064,
188: 992,
187: 974,
43: 927,
437: 902,
505: 891,
435: 890,
490: 881,
432: 879,
44: 876,
93: 869,
186: 853,
185: 851,
45: 848,
92: 802,
184: 800,
183: 797,
46: 775,
181: 759,
91: 757,
182: 757,
471: 746,
469: 743,
468: 741,
47: 727,
179: 726,
180: 723,
90: 721,
178: 713,
177: 707,
48: 703,
176: 686,
89: 684,
175: 683,
49: 677,
173: 670,
174: 667,
50: 663,
172: 651,
79: 650,
78: 649,
171: 649,
88: 645,
51: 644,
80: 638,
169: 637,
170: 636,
77: 632,
52: 631,
87: 624,
76: 623,
168: 623,
167: 622,
151: 613,
165: 611,
166: 610,
86: 607,
75: 606,
74: 599,
53: 594,
164: 594,
73: 593,
72: 589,
163: 589,
162: 588,
85: 585,
160: 584,
159: 584,
157: 583,
158: 583,
161: 582,
71: 580,
84: 579,
54: 575,
55: 573,
70: 570,
59: 569,
155: 569,
69: 568,
60: 568,
83: 567,
156: 566,
58: 565,
81: 561,
68: 561,
57: 561,
56: 560,
153: 560,
154: 559,
152: 559,
64: 558,
66: 558,
67: 558,
61: 558,
65: 557,
82: 557,
62: 555,
63: 551,
500: 515,
440: 479,
502: 447,
503: 432,
501: 409,
496: 394,
493: 394,
494: 394,
492: 394,
495: 394,
498: 394,
497: 394,
499: 394,
488: 391,
489: 391,
470: 275,
465: 268,
301: 78,
302: 45,
315: 26,
316: 26,
317: 26,
314: 26,
313: 26,
312: 26,
311: 26,
305: 25,
304: 25,
303: 25,
306: 25,
307: 25,
308: 25,
309: 25,
310: 25,
318: 25,
319: 25,
320: 25,
322: 24,
321: 24,
323: 22,
324: 22,
325: 18,
326: 18,
433: 17,
327: 17,
328: 17,
331: 16,
329: 16,
333: 16,
332: 16,
330: 16,
368: 15,
431: 15,
343: 15,
341: 15,
340: 15,
339: 15,
338: 15,
337: 15,
336: 15,
335: 15,
334: 15,
369: 15,
370: 15,
371: 15,
372: 15,
373: 15,
374: 15,
375: 15,
376: 15,
377: 15,
378: 15,
379: 15,
380: 15,
381: 15,
342: 15,
344: 15,
430: 15,
345: 15,
366: 15,
365: 15,
364: 15,
363: 15,
362: 15,
361: 15,
360: 15,
359: 15,
358: 15,
357: 15,
356: 15,
355: 15,
354: 15,
353: 15,
352: 15,
351: 15,
350: 15,
349: 15,
348: 15,
347: 15,
346: 15,
382: 15,
383: 15,
384: 15,
385: 15,
410: 15,
411: 15,
412: 15,
413: 15,
414: 15,
415: 15,
416: 15,
417: 15,
418: 15,
419: 15,
420: 15,
421: 15,
422: 15,
423: 15,
367: 15,
424: 15,
425: 15,
426: 15,
427: 15,
428: 15,
429: 15,
409: 15,
408: 15,
407: 15,
395: 15,
386: 15,
387: 15,
388: 15,
389: 15,
390: 15,
391: 15,
392: 15,
393: 15,
394: 15,
396: 15,
406: 15,
397: 15,
398: 15,
399: 15,
400: 15,
401: 15,
402: 15,
403: 15,
404: 15,
405: 15,
0: 13},
'srv_count': {511: 2263945,
1: 363308,
510: 269922,
2: 177246,
3: 108282,
4: 94630,
5: 88059,
6: 84992,
7: 82123,
8: 79115,
9: 76672,
10: 74968,
11: 73784,
12: 72283,
13: 70728,
14: 69017,
15: 67410,
16: 65952,
17: 64728,
18: 63561,
19: 62172,
20: 61263,
509: 54410,
21: 19463,
22: 18590,
23: 17868,
24: 17232,
25: 16396,
508: 13977,
449: 9164,
451: 8252,
480: 8006,
478: 7955,
482: 7103,
453: 6961,
26: 6670,
481: 6595,
27: 6208,
456: 6122,
450: 5974,
447: 5896,
446: 5868,
28: 5726,
458: 5716,
457: 5693,
507: 5438,
29: 5192,
452: 5127,
30: 4847,
477: 4586,
476: 4568,
31: 4511,
445: 4510,
32: 4271,
454: 4268,
479: 4150,
33: 4018,
461: 3930,
448: 3695,
34: 3688,
463: 3495,
35: 3440,
484: 3280,
444: 3223,
36: 3208,
37: 3013,
38: 2824,
486: 2811,
443: 2686,
441: 2680,
436: 2634,
39: 2621,
460: 2537,
459: 2527,
40: 2376,
483: 2301,
442: 2252,
439: 2225,
475: 2180,
464: 2117,
462: 2098,
41: 2080,
455: 2048,
42: 1824,
473: 1694,
466: 1663,
43: 1642,
438: 1597,
506: 1580,
44: 1535,
45: 1437,
504: 1390,
491: 1371,
487: 1360,
485: 1349,
46: 1346,
434: 1315,
47: 1247,
474: 1228,
472: 1217,
467: 1202,
48: 1148,
49: 1081,
50: 1016,
51: 944,
437: 898,
505: 888,
435: 886,
52: 881,
490: 878,
432: 875,
471: 743,
469: 740,
468: 738,
53: 678,
54: 632,
55: 556,
500: 512,
56: 498,
440: 475,
57: 458,
502: 444,
58: 429,
503: 429,
501: 406,
59: 405,
493: 391,
494: 391,
495: 391,
496: 391,
497: 391,
498: 391,
499: 391,
492: 391,
489: 388,
488: 388,
60: 385,
61: 357,
62: 346,
63: 327,
64: 301,
65: 280,
470: 272,
66: 271,
465: 265,
67: 255,
68: 239,
69: 226,
70: 214,
71: 208,
72: 200,
73: 197,
74: 189,
75: 181,
76: 175,
77: 168,
82: 164,
83: 162,
84: 161,
78: 161,
79: 160,
85: 158,
81: 157,
80: 157,
86: 155,
89: 154,
87: 153,
90: 152,
88: 151,
92: 146,
91: 145,
93: 139,
157: 138,
154: 138,
94: 137,
153: 137,
155: 137,
156: 137,
152: 136,
96: 134,
95: 134,
151: 134,
150: 133,
99: 132,
97: 132,
149: 132,
147: 131,
142: 131,
98: 131,
123: 131,
141: 131,
110: 131,
124: 130,
125: 130,
140: 130,
130: 130,
128: 130,
114: 130,
146: 130,
111: 130,
148: 130,
129: 130,
139: 129,
137: 129,
136: 129,
131: 129,
144: 129,
127: 129,
126: 129,
113: 129,
104: 129,
122: 129,
107: 129,
108: 129,
109: 129,
105: 129,
138: 128,
103: 128,
143: 128,
145: 128,
112: 128,
134: 128,
106: 128,
132: 128,
158: 127,
100: 127,
119: 127,
120: 127,
135: 127,
133: 127,
159: 126,
102: 126,
101: 126,
121: 125,
116: 125,
118: 125,
115: 125,
117: 123,
160: 121,
161: 66,
162: 53,
197: 52,
198: 52,
203: 51,
201: 50,
180: 50,
204: 50,
193: 50,
200: 50,
199: 50,
192: 50,
179: 50,
163: 50,
189: 49,
190: 49,
191: 49,
194: 49,
195: 49,
196: 49,
202: 49,
205: 49,
223: 48,
221: 48,
187: 48,
206: 48,
218: 48,
188: 48,
184: 48,
182: 48,
181: 48,
185: 47,
186: 47,
219: 47,
220: 47,
222: 47,
224: 47,
208: 47,
207: 47,
171: 47,
170: 47,
172: 47,
169: 47,
165: 47,
173: 47,
178: 47,
164: 47,
174: 47,
183: 47,
168: 46,
167: 46,
166: 46,
209: 46,
210: 46,
177: 46,
175: 46,
217: 46,
230: 46,
225: 46,
226: 46,
227: 46,
228: 46,
229: 46,
236: 45,
235: 45,
234: 45,
233: 45,
231: 45,
232: 45,
176: 45,
211: 45,
213: 45,
216: 45,
215: 44,
212: 44,
214: 44,
237: 44,
238: 43,
239: 43,
240: 43,
241: 34,
252: 32,
253: 32,
254: 32,
242: 32,
255: 31,
243: 31,
245: 31,
267: 31,
251: 31,
256: 31,
257: 31,
258: 31,
259: 31,
263: 30,
271: 30,
270: 30,
269: 30,
268: 30,
266: 30,
265: 30,
264: 30,
261: 30,
262: 30,
260: 30,
250: 30,
249: 30,
248: 30,
247: 30,
246: 30,
244: 30,
272: 29,
273: 29,
276: 28,
275: 28,
274: 28,
311: 26,
278: 26,
310: 26,
277: 26,
312: 26,
314: 25,
309: 25,
313: 25,
315: 25,
316: 25,
317: 25,
279: 25,
306: 24,
307: 24,
308: 24,
305: 24,
289: 24,
304: 24,
293: 24,
292: 24,
291: 24,
290: 24,
288: 24,
287: 24,
280: 24,
303: 23,
286: 23,
302: 23,
294: 23,
281: 23,
282: 23,
301: 23,
284: 23,
285: 23,
283: 23,
295: 23,
296: 23,
297: 23,
298: 23,
299: 23,
300: 23,
318: 22,
319: 21,
320: 19,
321: 19,
322: 19,
323: 17,
324: 15,
433: 13,
0: 13,
325: 13,
327: 12,
326: 12,
394: 11,
405: 11,
404: 11,
403: 11,
402: 11,
401: 11,
400: 11,
399: 11,
398: 11,
397: 11,
396: 11,
395: 11,
393: 11,
407: 11,
392: 11,
391: 11,
390: 11,
389: 11,
388: 11,
387: 11,
386: 11,
385: 11,
384: 11,
383: 11,
406: 11,
408: 11,
381: 11,
421: 11,
431: 11,
430: 11,
429: 11,
428: 11,
427: 11,
426: 11,
425: 11,
424: 11,
423: 11,
422: 11,
420: 11,
409: 11,
419: 11,
418: 11,
417: 11,
416: 11,
415: 11,
414: 11,
413: 11,
412: 11,
411: 11,
410: 11,
382: 11,
380: 11,
328: 11,
379: 11,
352: 11,
351: 11,
350: 11,
349: 11,
348: 11,
347: 11,
346: 11,
345: 11,
344: 11,
343: 11,
342: 11,
341: 11,
339: 11,
338: 11,
337: 11,
336: 11,
335: 11,
334: 11,
333: 11,
332: 11,
331: 11,
330: 11,
329: 11,
353: 11,
354: 11,
355: 11,
368: 11,
378: 11,
377: 11,
376: 11,
375: 11,
374: 11,
373: 11,
372: 11,
371: 11,
370: 11,
369: 11,
367: 11,
356: 11,
366: 11,
365: 11,
364: 11,
363: 11,
362: 11,
361: 11,
360: 11,
359: 11,
358: 11,
357: 11,
340: 11},
'serror_rate': {0.0: 4008319,
1.0: 865155,
0.99: 3017,
0.08: 1647,
0.05: 1533,
0.14: 1309,
0.07: 1236,
0.06: 1209,
0.04: 1183,
0.09: 1028,
0.1: 988,
0.03: 920,
0.13: 901,
0.11: 886,
0.12: 870,
0.2: 653,
0.02: 589,
0.5: 577,
0.25: 544,
0.01: 507,
0.17: 458,
0.15: 423,
0.33: 416,
0.18: 356,
0.22: 352,
0.16: 351,
0.23: 341,
0.21: 265,
0.19: 215,
0.27: 182,
0.98: 178,
0.44: 136,
0.29: 129,
0.24: 109,
0.97: 109,
0.28: 75,
0.96: 73,
0.31: 72,
0.26: 65,
0.3: 52,
0.36: 51,
0.95: 47,
0.94: 47,
0.8: 38,
0.32: 37,
0.93: 33,
0.79: 31,
0.65: 30,
0.64: 29,
0.35: 26,
0.67: 26,
0.75: 26,
0.63: 25,
0.83: 25,
0.85: 24,
0.66: 24,
0.84: 21,
0.86: 21,
0.34: 20,
0.82: 18,
0.59: 18,
0.81: 18,
0.74: 17,
0.78: 17,
0.4: 16,
0.92: 16,
0.6: 16,
0.58: 14,
0.62: 14,
0.57: 13,
0.61: 13,
0.68: 13,
0.73: 12,
0.41: 12,
0.43: 12,
0.38: 11,
0.7: 11,
0.39: 10,
0.71: 10,
0.37: 10,
0.77: 10,
0.69: 10,
0.91: 10,
0.42: 10,
0.56: 9,
0.76: 9,
0.72: 9,
0.53: 9,
0.52: 8,
0.55: 8,
0.51: 8,
0.9: 7,
0.54: 7,
0.88: 7,
0.89: 6,
0.87: 4},
'srv_serror_rate': {0.0: 4015875,
1.0: 870397,
0.03: 1359,
0.04: 1204,
0.05: 1100,
0.06: 924,
0.02: 834,
0.08: 739,
0.07: 698,
0.5: 580,
0.33: 469,
0.25: 460,
0.12: 447,
0.17: 432,
0.14: 427,
0.2: 427,
0.11: 424,
0.1: 421,
0.09: 419,
0.01: 89,
0.67: 64,
0.95: 56,
0.94: 39,
0.22: 37,
0.15: 37,
0.13: 35,
0.18: 35,
0.29: 31,
0.92: 30,
0.4: 29,
0.93: 28,
0.75: 22,
0.91: 22,
0.9: 20,
0.89: 20,
0.88: 20,
0.8: 19,
0.83: 19,
0.86: 17,
0.21: 8,
0.19: 8,
0.23: 8,
0.3: 6,
0.58: 5,
0.16: 5,
0.27: 5,
0.41: 4,
0.43: 4,
0.37: 4,
0.6: 4,
0.38: 4,
0.56: 3,
0.76: 3,
0.39: 3,
0.36: 3,
0.35: 3,
0.59: 3,
0.26: 3,
0.71: 3,
0.42: 2,
0.85: 2,
0.53: 2,
0.82: 2,
0.34: 2,
0.78: 2,
0.87: 2,
0.45: 2,
0.32: 2,
0.44: 1,
0.54: 1,
0.46: 1,
0.96: 1,
0.72: 1,
0.24: 1,
0.63: 1,
0.48: 1,
0.55: 1,
0.7: 1,
0.57: 1,
0.51: 1,
0.68: 1,
0.74: 1,
0.73: 1,
0.47: 1,
0.65: 1,
0.28: 1,
0.61: 1},
'rerror_rate': {0.0: 4611181,
1.0: 269224,
0.86: 1168,
0.87: 1027,
0.92: 929,
0.95: 929,
0.9: 909,
0.91: 738,
0.93: 696,
0.88: 671,
0.96: 645,
0.89: 607,
0.94: 594,
0.85: 576,
0.99: 487,
0.82: 450,
0.5: 417,
0.77: 393,
0.97: 370,
0.98: 351,
0.8: 300,
0.01: 292,
0.25: 280,
0.33: 274,
0.84: 271,
0.78: 267,
0.76: 246,
0.2: 244,
0.79: 239,
0.75: 195,
0.73: 183,
0.08: 178,
0.03: 173,
0.17: 170,
0.81: 166,
0.07: 161,
0.14: 148,
0.06: 148,
0.71: 147,
0.56: 140,
0.04: 139,
0.05: 138,
0.12: 134,
0.83: 132,
0.02: 129,
0.11: 112,
0.1: 107,
0.09: 103,
0.67: 97,
0.69: 84,
0.72: 74,
0.74: 67,
0.7: 58,
0.64: 57,
0.68: 37,
0.21: 27,
0.65: 26,
0.66: 20,
0.6: 20,
0.22: 17,
0.36: 17,
0.62: 17,
0.4: 16,
0.26: 15,
0.57: 15,
0.35: 14,
0.37: 13,
0.34: 12,
0.59: 12,
0.27: 12,
0.58: 12,
0.29: 11,
0.32: 11,
0.61: 10,
0.19: 10,
0.63: 10,
0.3: 10,
0.23: 9,
0.24: 8,
0.43: 8,
0.31: 8,
0.28: 7,
0.38: 5,
0.18: 2,
0.45: 1,
0.55: 1,
0.39: 1,
0.44: 1,
0.16: 1},
'srv_rerror_rate': {0.0: 4607827,
1.0: 280581,
0.5: 1230,
0.33: 918,
0.25: 703,
0.03: 656,
0.2: 618,
0.02: 575,
0.17: 551,
0.12: 544,
0.04: 524,
0.14: 496,
0.05: 451,
0.06: 414,
0.08: 374,
0.07: 335,
0.11: 259,
0.1: 228,
0.09: 209,
0.67: 185,
0.4: 87,
0.29: 73,
0.22: 55,
0.01: 51,
0.75: 47,
0.6: 28,
0.83: 23,
0.8: 22,
0.86: 22,
0.88: 20,
0.95: 16,
0.85: 15,
0.18: 15,
0.96: 15,
0.79: 13,
0.89: 13,
0.81: 13,
0.43: 13,
0.87: 12,
0.82: 12,
0.15: 11,
0.13: 11,
0.84: 11,
0.93: 10,
0.9: 10,
0.71: 9,
0.38: 9,
0.92: 9,
0.62: 8,
0.73: 8,
0.78: 8,
0.94: 8,
0.3: 7,
0.64: 7,
0.76: 7,
0.91: 7,
0.69: 7,
0.57: 6,
0.56: 4,
0.7: 3,
0.77: 3,
0.21: 3,
0.74: 2,
0.27: 2,
0.72: 2,
0.44: 2,
0.58: 2,
0.36: 2,
0.19: 2,
0.23: 2,
0.39: 1,
0.24: 1,
0.55: 1,
0.32: 1,
0.16: 1,
0.37: 1},
'same_srv_rate': {1.0: 3780885,
0.06: 111230,
0.05: 108018,
0.07: 101118,
0.04: 100316,
0.03: 96970,
0.02: 93355,
0.01: 85519,
0.08: 71784,
0.09: 49290,
0.1: 38538,
0.0: 37497,
0.12: 36085,
0.13: 33632,
0.11: 32478,
0.14: 25199,
0.15: 17096,
0.5: 14454,
0.16: 12054,
0.17: 8933,
0.33: 6316,
0.18: 5025,
0.2: 4226,
0.19: 3252,
0.67: 2426,
0.25: 2062,
0.21: 1533,
0.22: 1312,
0.23: 1072,
0.24: 1058,
0.99: 1014,
0.4: 967,
0.75: 908,
0.27: 700,
0.26: 696,
0.29: 682,
0.8: 565,
0.3: 500,
0.38: 497,
0.28: 493,
0.98: 476,
0.86: 469,
0.83: 461,
0.31: 430,
0.43: 386,
0.36: 358,
0.44: 355,
0.32: 341,
0.6: 319,
0.35: 276,
0.47: 266,
0.45: 264,
0.42: 263,
0.41: 250,
0.39: 211,
0.46: 207,
0.88: 189,
0.57: 168,
0.48: 158,
0.37: 156,
0.56: 155,
0.53: 154,
0.97: 150,
0.52: 149,
0.34: 149,
0.92: 137,
0.71: 123,
0.55: 113,
0.62: 111,
0.54: 109,
0.93: 109,
0.94: 103,
0.89: 99,
0.96: 80,
0.9: 78,
0.91: 77,
0.64: 75,
0.58: 71,
0.95: 68,
0.78: 48,
0.73: 47,
0.59: 42,
0.69: 40,
0.65: 35,
0.49: 35,
0.7: 31,
0.82: 30,
0.61: 27,
0.76: 24,
0.85: 24,
0.87: 24,
0.79: 22,
0.77: 19,
0.74: 19,
0.72: 17,
0.68: 17,
0.63: 15,
0.51: 13,
0.81: 12,
0.84: 12,
0.66: 10},
'diff_srv_rate': {0.0: 3780259,
0.06: 524404,
0.07: 288438,
0.05: 193620,
0.08: 33433,
1.0: 23610,
0.04: 9320,
0.67: 7034,
0.5: 5918,
0.09: 3883,
0.6: 2542,
0.12: 2193,
0.1: 2146,
0.11: 1972,
0.14: 1386,
0.13: 1144,
0.33: 1102,
0.29: 1101,
0.15: 1097,
0.4: 1087,
0.01: 1071,
0.17: 938,
0.25: 788,
0.75: 759,
0.18: 730,
0.2: 665,
0.16: 662,
0.19: 603,
0.03: 541,
0.22: 520,
0.21: 494,
0.02: 382,
0.38: 346,
0.96: 329,
0.27: 324,
0.23: 278,
0.24: 256,
0.52: 234,
0.43: 214,
0.3: 205,
0.36: 180,
0.31: 179,
0.57: 169,
0.95: 168,
0.53: 159,
0.26: 137,
0.44: 129,
0.8: 126,
0.42: 95,
0.28: 88,
0.56: 79,
0.99: 75,
0.54: 73,
0.55: 62,
0.51: 57,
0.32: 56,
0.45: 55,
0.37: 51,
0.41: 44,
0.35: 43,
0.58: 41,
0.71: 40,
0.62: 39,
0.39: 32,
0.83: 31,
0.46: 27,
0.64: 14,
0.86: 14,
0.78: 13,
0.73: 12,
0.69: 12,
0.82: 12,
0.97: 11,
0.47: 11,
0.98: 10,
0.59: 10,
0.77: 6,
0.7: 6,
0.88: 6,
0.61: 4,
0.85: 4,
0.89: 3,
0.87: 3,
0.92: 2,
0.79: 2,
0.74: 2,
0.76: 2,
0.72: 2,
0.68: 1,
0.9: 1,
0.81: 1,
0.65: 1,
0.91: 1,
0.63: 1,
0.48: 1},
'srv_diff_host_rate': {0.0: 4559729,
1.0: 78821,
0.12: 14655,
0.5: 12645,
0.67: 12414,
0.11: 11857,
0.33: 11622,
0.25: 11060,
0.1: 10737,
0.14: 10678,
0.17: 10166,
0.08: 9722,
0.2: 9688,
0.09: 9476,
0.18: 9451,
0.15: 9398,
0.4: 8919,
0.29: 8675,
0.07: 8339,
0.13: 8120,
0.22: 8087,
0.06: 7204,
0.02: 4920,
0.05: 4831,
0.01: 4146,
0.19: 3789,
0.21: 3705,
0.27: 3347,
0.16: 3345,
0.75: 3342,
0.04: 2945,
0.23: 2770,
0.6: 2717,
0.38: 2716,
0.3: 2557,
0.43: 2484,
0.03: 1789,
0.24: 1286,
0.31: 1050,
0.36: 926,
0.8: 839,
0.44: 687,
0.57: 618,
0.26: 406,
0.28: 319,
0.42: 186,
0.45: 169,
0.56: 157,
0.83: 144,
0.71: 135,
0.62: 135,
0.32: 106,
0.35: 90,
0.46: 47,
0.55: 39,
0.86: 38,
0.37: 26,
0.39: 25,
0.47: 24,
0.41: 23,
0.54: 20,
0.58: 17,
0.64: 16,
0.88: 9,
0.78: 9,
0.53: 7,
0.7: 6,
0.73: 2,
0.48: 1,
0.89: 1,
0.77: 1,
0.9: 1},
'dst_host_count': {255: 4305015,
1: 26103,
2: 20242,
3: 13175,
4: 11736,
5: 9935,
6: 9376,
7: 8520,
8: 8206,
9: 7695,
10: 7358,
11: 7007,
12: 6825,
13: 6480,
14: 6312,
15: 6071,
16: 5881,
17: 5662,
18: 5564,
19: 5375,
20: 5277,
21: 5128,
22: 5036,
23: 4919,
24: 4830,
25: 4634,
26: 4543,
27: 4421,
28: 4329,
29: 4227,
30: 4176,
31: 4061,
32: 4011,
33: 3913,
34: 3843,
35: 3764,
36: 3719,
37: 3628,
38: 3592,
39: 3540,
40: 3485,
41: 3420,
42: 3395,
43: 3318,
44: 3279,
45: 3204,
46: 3149,
47: 3102,
48: 3076,
49: 3024,
50: 2999,
51: 2961,
52: 2917,
53: 2875,
54: 2858,
55: 2803,
56: 2786,
57: 2748,
58: 2720,
59: 2684,
60: 2667,
61: 2632,
62: 2613,
63: 2591,
64: 2567,
65: 2539,
66: 2516,
67: 2482,
68: 2467,
69: 2439,
70: 2419,
71: 2397,
72: 2382,
73: 2352,
74: 2339,
75: 2312,
76: 2294,
77: 2273,
78: 2257,
79: 2225,
80: 2214,
81: 2185,
82: 2154,
83: 2131,
84: 2121,
85: 2098,
86: 2087,
87: 2067,
88: 2048,
89: 2022,
90: 2011,
91: 1989,
92: 1984,
93: 1966,
94: 1946,
95: 1936,
96: 1917,
97: 1900,
98: 1890,
99: 1867,
100: 1853,
101: 1840,
102: 1824,
103: 1808,
104: 1790,
105: 1762,
106: 1748,
107: 1730,
108: 1724,
109: 1695,
110: 1687,
111: 1673,
112: 1662,
113: 1652,
114: 1645,
115: 1631,
116: 1624,
117: 1610,
118: 1603,
119: 1589,
120: 1576,
121: 1565,
122: 1558,
123: 1549,
124: 1534,
125: 1527,
126: 1522,
127: 1513,
128: 1505,
129: 1494,
130: 1486,
131: 1474,
132: 1462,
133: 1448,
134: 1442,
135: 1434,
136: 1431,
137: 1426,
138: 1424,
139: 1414,
140: 1408,
141: 1399,
142: 1393,
143: 1379,
144: 1375,
145: 1362,
146: 1347,
147: 1335,
148: 1328,
149: 1323,
150: 1320,
151: 1308,
152: 1302,
153: 1295,
154: 1291,
155: 1283,
156: 1275,
157: 1267,
158: 1257,
159: 1249,
160: 1243,
161: 1230,
162: 1221,
163: 1214,
164: 1208,
165: 1201,
166: 1192,
167: 1183,
168: 1182,
169: 1172,
170: 1167,
171: 1158,
172: 1151,
173: 1144,
174: 1141,
175: 1134,
176: 1129,
177: 1125,
178: 1119,
179: 1114,
180: 1104,
181: 1100,
182: 1090,
183: 1081,
184: 1075,
185: 1068,
186: 1064,
187: 1056,
188: 1052,
189: 1048,
190: 1044,
191: 1041,
192: 1039,
193: 1034,
194: 1029,
195: 1024,
196: 1015,
197: 1007,
198: 1004,
199: 999,
200: 995,
201: 989,
202: 979,
203: 971,
204: 963,
205: 960,
206: 955,
207: 954,
208: 953,
209: 943,
210: 937,
211: 929,
212: 922,
213: 916,
214: 906,
215: 898,
216: 885,
217: 878,
218: 875,
219: 866,
220: 861,
221: 849,
222: 840,
223: 833,
224: 830,
225: 824,
226: 820,
227: 814,
228: 802,
229: 794,
230: 788,
231: 780,
232: 778,
233: 773,
234: 771,
235: 767,
236: 763,
237: 759,
238: 753,
239: 748,
240: 742,
241: 735,
242: 733,
243: 729,
244: 729,
245: 727,
246: 723,
247: 721,
248: 719,
249: 710,
250: 701,
251: 697,
252: 691,
253: 682,
254: 678,
0: 33},
'dst_host_srv_count': {255: 3363886,
1: 117468,
2: 70459,
3: 58016,
4: 55638,
5: 54646,
6: 54361,
7: 54072,
8: 53942,
9: 53692,
10: 53501,
11: 53186,
12: 52853,
13: 52669,
14: 52397,
15: 51980,
16: 51560,
17: 51081,
18: 50654,
19: 50134,
20: 49652,
21: 10723,
22: 10695,
254: 10687,
23: 10639,
25: 10629,
24: 10599,
250: 7182,
253: 6825,
251: 6349,
249: 5871,
241: 5837,
245: 5786,
239: 5298,
252: 5122,
240: 4797,
244: 4641,
235: 4282,
242: 4143,
238: 4118,
247: 4006,
246: 3942,
248: 3895,
231: 3804,
234: 3683,
237: 3678,
236: 3471,
243: 3251,
232: 3184,
233: 3180,
228: 2795,
229: 2572,
230: 2558,
227: 2177,
225: 2074,
221: 1758,
226: 1485,
222: 1484,
219: 1482,
224: 1393,
223: 1388,
26: 1374,
27: 1369,
166: 1359,
30: 1319,
28: 1317,
29: 1299,
64: 1296,
162: 1287,
33: 1287,
131: 1280,
46: 1277,
38: 1268,
63: 1263,
47: 1252,
41: 1247,
65: 1240,
32: 1237,
45: 1235,
152: 1233,
42: 1222,
34: 1220,
36: 1220,
48: 1220,
43: 1218,
31: 1215,
61: 1213,
40: 1210,
129: 1204,
44: 1200,
56: 1195,
149: 1192,
35: 1191,
49: 1188,
37: 1179,
58: 1177,
169: 1176,
146: 1176,
62: 1174,
132: 1169,
39: 1167,
121: 1165,
69: 1157,
138: 1156,
173: 1149,
148: 1147,
215: 1146,
54: 1145,
66: 1145,
141: 1141,
51: 1141,
167: 1141,
140: 1140,
53: 1136,
126: 1136,
86: 1132,
151: 1131,
59: 1130,
75: 1129,
143: 1128,
144: 1123,
165: 1121,
122: 1120,
171: 1115,
60: 1114,
71: 1108,
133: 1108,
120: 1106,
119: 1106,
50: 1106,
82: 1103,
145: 1102,
52: 1100,
137: 1098,
170: 1098,
68: 1097,
134: 1097,
154: 1097,
136: 1094,
57: 1093,
142: 1092,
155: 1091,
77: 1091,
130: 1090,
139: 1084,
164: 1084,
55: 1082,
147: 1081,
157: 1078,
168: 1074,
73: 1069,
182: 1069,
70: 1067,
153: 1066,
67: 1065,
79: 1061,
81: 1060,
174: 1060,
216: 1058,
156: 1058,
90: 1055,
135: 1052,
150: 1051,
72: 1049,
91: 1049,
78: 1049,
80: 1046,
87: 1045,
116: 1044,
99: 1033,
117: 1032,
74: 1029,
161: 1026,
93: 1024,
98: 1016,
94: 1016,
100: 1014,
84: 1013,
76: 1012,
163: 1011,
95: 1009,
103: 1008,
105: 1004,
88: 1003,
113: 998,
178: 997,
175: 996,
89: 993,
158: 990,
85: 987,
180: 987,
83: 982,
104: 979,
106: 975,
181: 971,
112: 969,
102: 965,
185: 964,
124: 963,
118: 959,
128: 959,
179: 952,
172: 952,
92: 950,
97: 947,
127: 945,
177: 945,
183: 942,
101: 940,
125: 939,
107: 938,
176: 938,
110: 934,
160: 930,
220: 929,
114: 928,
159: 923,
111: 921,
203: 915,
115: 913,
96: 909,
123: 907,
214: 895,
184: 889,
192: 886,
217: 882,
187: 874,
213: 868,
186: 866,
208: 863,
191: 862,
109: 862,
193: 858,
108: 832,
212: 828,
196: 824,
201: 815,
205: 802,
188: 796,
204: 775,
189: 769,
200: 760,
194: 750,
190: 725,
210: 710,
211: 701,
195: 677,
209: 672,
218: 672,
198: 651,
197: 650,
199: 610,
202: 607,
207: 547,
206: 523,
0: 33},
'dst_host_same_srv_rate': {1.0: 3450149,
0.02: 161618,
0.04: 157446,
0.05: 155521,
0.07: 149794,
0.01: 126495,
0.0: 113651,
0.03: 106632,
0.06: 102579,
0.08: 59469,
0.09: 29796,
0.98: 17350,
0.96: 14685,
0.95: 13834,
0.93: 11040,
0.1: 11022,
0.94: 10896,
0.99: 10511,
0.91: 9460,
0.92: 8726,
0.97: 8416,
0.89: 6155,
0.9: 4918,
0.87: 4420,
0.88: 4399,
0.67: 2985,
0.8: 2860,
0.86: 2822,
0.62: 2654,
0.84: 2595,
0.71: 2593,
0.64: 2590,
0.75: 2573,
0.6: 2572,
0.83: 2545,
0.85: 2524,
0.65: 2494,
0.5: 2484,
0.73: 2436,
0.69: 2435,
0.68: 2351,
0.55: 2335,
0.25: 2335,
0.7: 2334,
0.63: 2261,
0.72: 2260,
0.61: 2234,
0.56: 2233,
0.82: 2213,
0.57: 2204,
0.59: 2198,
0.74: 2194,
0.58: 2142,
0.11: 2128,
0.66: 2078,
0.54: 2075,
0.76: 2067,
0.53: 1961,
0.38: 1867,
0.12: 1860,
0.24: 1846,
0.81: 1840,
0.33: 1838,
0.47: 1825,
0.52: 1815,
0.44: 1770,
0.79: 1762,
0.4: 1761,
0.51: 1761,
0.77: 1757,
0.78: 1748,
0.49: 1733,
0.45: 1727,
0.27: 1724,
0.2: 1705,
0.29: 1698,
0.22: 1684,
0.39: 1659,
0.13: 1651,
0.46: 1648,
0.15: 1643,
0.31: 1615,
0.26: 1612,
0.14: 1609,
0.35: 1592,
0.48: 1592,
0.36: 1590,
0.18: 1555,
0.42: 1538,
0.32: 1537,
0.16: 1533,
0.43: 1532,
0.17: 1527,
0.41: 1524,
0.23: 1508,
0.28: 1452,
0.21: 1432,
0.19: 1422,
0.37: 1417,
0.3: 1414,
0.34: 1361},
'dst_host_diff_srv_rate': {0.0: 3442197,
0.07: 458302,
0.06: 281262,
0.05: 185221,
0.08: 145560,
0.01: 130698,
0.02: 40670,
0.09: 39347,
0.03: 34462,
0.04: 26969,
1.0: 20001,
0.85: 7441,
0.86: 5647,
0.84: 5228,
0.1: 4769,
0.87: 4215,
0.11: 3118,
0.12: 2899,
0.82: 2036,
0.83: 1953,
0.62: 1826,
0.14: 1771,
0.64: 1734,
0.65: 1688,
0.67: 1621,
0.13: 1538,
0.6: 1468,
0.15: 1443,
0.17: 1291,
0.69: 1215,
0.5: 1180,
0.89: 1144,
0.66: 1143,
0.51: 1130,
0.53: 1125,
0.73: 1097,
0.18: 1075,
0.2: 1044,
0.63: 998,
0.88: 963,
0.71: 954,
0.25: 929,
0.74: 918,
0.68: 915,
0.16: 862,
0.58: 860,
0.61: 843,
0.56: 841,
0.55: 838,
0.33: 836,
0.59: 817,
0.52: 789,
0.22: 778,
0.4: 765,
0.7: 760,
0.8: 736,
0.78: 731,
0.54: 711,
0.75: 680,
0.19: 674,
0.29: 650,
0.76: 643,
0.72: 627,
0.47: 620,
0.57: 611,
0.21: 605,
0.91: 602,
0.81: 588,
0.77: 556,
0.49: 514,
0.44: 510,
0.43: 500,
0.48: 490,
0.23: 465,
0.27: 459,
0.42: 444,
0.79: 442,
0.9: 418,
0.38: 393,
0.24: 326,
0.45: 322,
0.3: 301,
0.46: 295,
0.31: 259,
0.41: 254,
0.36: 225,
0.39: 174,
0.37: 146,
0.26: 146,
0.35: 145,
0.28: 124,
0.95: 112,
0.34: 111,
0.97: 110,
0.32: 102,
0.96: 94,
0.93: 82,
0.92: 64,
0.94: 61,
0.98: 58,
0.99: 57},
'dst_host_same_src_port_rate': {1.0: 2881921,
0.0: 1411146,
0.01: 215839,
0.02: 71077,
0.03: 43141,
0.04: 27020,
0.05: 21019,
0.06: 17541,
0.5: 15976,
0.08: 14104,
0.07: 13581,
0.33: 13564,
0.25: 12076,
0.2: 10772,
0.17: 10050,
0.14: 9352,
0.12: 9237,
0.11: 9022,
0.1: 8459,
0.09: 8411,
0.99: 6231,
0.98: 4630,
0.96: 2882,
0.95: 2518,
0.97: 2166,
0.93: 1528,
0.89: 1337,
0.15: 1329,
0.29: 1274,
0.88: 1262,
0.13: 1239,
0.31: 1210,
0.92: 1161,
0.32: 1160,
0.27: 1155,
0.22: 1141,
0.91: 1139,
0.35: 1131,
0.94: 1129,
0.16: 1123,
0.38: 1098,
0.24: 1082,
0.28: 1066,
0.21: 1058,
0.18: 1053,
0.36: 1053,
0.3: 1040,
0.26: 1020,
0.4: 990,
0.19: 969,
0.87: 961,
0.34: 957,
0.23: 948,
0.39: 933,
0.85: 880,
0.37: 843,
0.9: 826,
0.82: 815,
0.44: 807,
0.42: 796,
0.41: 794,
0.86: 775,
0.43: 720,
0.45: 662,
0.84: 645,
0.47: 642,
0.46: 625,
0.83: 610,
0.8: 590,
0.67: 551,
0.49: 508,
0.48: 506,
0.75: 494,
0.53: 480,
0.6: 467,
0.62: 464,
0.55: 460,
0.73: 454,
0.52: 453,
0.51: 449,
0.74: 444,
0.81: 442,
0.56: 439,
0.58: 429,
0.57: 425,
0.79: 420,
0.54: 409,
0.71: 398,
0.69: 395,
0.59: 369,
0.68: 369,
0.61: 361,
0.76: 358,
0.78: 349,
0.64: 348,
0.72: 334,
0.65: 327,
0.7: 320,
0.63: 315,
0.77: 303,
0.66: 280},
'dst_host_srv_diff_host_rate': {0.0: 4384482,
0.02: 117501,
0.01: 104684,
0.04: 66844,
0.03: 65742,
0.05: 46108,
0.06: 19440,
0.07: 15156,
0.5: 7380,
0.08: 6568,
0.09: 6077,
0.15: 3923,
0.11: 3895,
0.16: 3873,
0.13: 3562,
0.1: 3507,
1.0: 3463,
0.2: 3262,
0.18: 3250,
0.14: 3046,
0.17: 3019,
0.12: 2919,
0.25: 2729,
0.22: 2423,
0.19: 2245,
0.21: 2213,
0.24: 1225,
0.23: 1161,
0.26: 1070,
0.29: 974,
0.33: 915,
0.27: 831,
0.51: 806,
0.4: 550,
0.28: 478,
0.3: 443,
0.67: 385,
0.31: 337,
0.52: 297,
0.32: 277,
0.38: 167,
0.34: 126,
0.35: 116,
0.43: 112,
0.36: 106,
0.53: 92,
0.6: 88,
0.54: 64,
0.37: 55,
0.44: 54,
0.57: 49,
0.56: 49,
0.75: 44,
0.39: 37,
0.55: 36,
0.42: 35,
0.45: 23,
0.41: 22,
0.46: 20,
0.47: 14,
0.62: 13,
0.8: 11,
0.48: 9,
0.58: 5,
0.71: 4,
0.49: 4,
0.86: 2,
0.64: 2,
0.83: 2,
0.7: 2,
0.73: 2,
0.97: 2,
0.88: 1,
0.59: 1,
0.93: 1,
0.78: 1},
'dst_host_serror_rate': {0.0: 3966023,
1.0: 867360,
0.01: 32574,
0.02: 8190,
0.03: 3868,
0.04: 1973,
0.05: 1702,
0.08: 1258,
0.07: 1201,
0.09: 979,
0.06: 937,
0.14: 908,
0.13: 887,
0.15: 811,
0.11: 756,
0.1: 754,
0.16: 748,
0.12: 611,
0.18: 555,
0.25: 371,
0.17: 364,
0.99: 332,
0.27: 303,
0.2: 297,
0.19: 294,
0.31: 282,
0.33: 219,
0.98: 191,
0.35: 169,
0.24: 145,
0.28: 134,
0.5: 131,
0.22: 117,
0.96: 116,
0.32: 113,
0.97: 112,
0.53: 106,
0.29: 104,
0.94: 96,
0.3: 89,
0.42: 89,
0.23: 89,
0.93: 84,
0.95: 82,
0.26: 79,
0.21: 77,
0.92: 59,
0.36: 57,
0.91: 57,
0.55: 48,
0.89: 48,
0.51: 45,
0.47: 45,
0.9: 45,
0.44: 43,
0.49: 42,
0.88: 40,
0.45: 40,
0.87: 39,
0.43: 39,
0.85: 37,
0.4: 36,
0.56: 35,
0.84: 34,
0.82: 34,
0.78: 34,
0.8: 33,
0.58: 32,
0.67: 32,
0.75: 32,
0.34: 31,
0.38: 31,
0.52: 31,
0.71: 31,
0.48: 30,
0.6: 30,
0.86: 30,
0.83: 28,
0.46: 28,
0.76: 28,
0.62: 28,
0.73: 27,
0.54: 27,
0.69: 27,
0.65: 27,
0.64: 26,
0.39: 25,
0.41: 24,
0.81: 23,
0.79: 23,
0.57: 22,
0.37: 22,
0.68: 20,
0.77: 20,
0.74: 19,
0.7: 19,
0.59: 18,
0.61: 18,
0.72: 18,
0.66: 17,
0.63: 17},
'dst_host_srv_serror_rate': {0.0: 3973284,
1.0: 869899,
0.01: 45103,
0.02: 6065,
0.03: 1140,
0.04: 731,
0.05: 281,
0.06: 183,
0.5: 112,
0.08: 106,
0.07: 106,
0.09: 80,
0.12: 60,
0.11: 59,
0.97: 57,
0.98: 54,
0.67: 53,
0.1: 51,
0.96: 48,
0.33: 46,
0.17: 41,
0.14: 35,
0.25: 32,
0.2: 28,
0.95: 28,
0.92: 27,
0.91: 23,
0.94: 23,
0.93: 22,
0.75: 21,
0.88: 20,
0.78: 19,
0.16: 18,
0.9: 16,
0.62: 15,
0.13: 14,
0.73: 14,
0.15: 14,
0.79: 14,
0.18: 13,
0.6: 13,
0.27: 13,
0.43: 12,
0.4: 12,
0.31: 12,
0.65: 12,
0.56: 12,
0.85: 11,
0.22: 11,
0.89: 11,
0.29: 11,
0.83: 10,
0.8: 10,
0.7: 10,
0.69: 10,
0.86: 10,
0.87: 10,
0.48: 10,
0.36: 9,
0.76: 9,
0.51: 9,
0.81: 9,
0.3: 8,
0.49: 8,
0.71: 8,
0.66: 8,
0.57: 8,
0.82: 8,
0.24: 8,
0.34: 8,
0.21: 8,
0.41: 8,
0.63: 7,
0.39: 7,
0.64: 7,
0.52: 7,
0.38: 7,
0.47: 7,
0.84: 7,
0.26: 7,
0.19: 7,
0.32: 7,
0.61: 7,
0.68: 6,
0.54: 6,
0.77: 6,
0.74: 6,
0.58: 6,
0.45: 6,
0.55: 5,
0.72: 5,
0.23: 5,
0.28: 5,
0.42: 5,
0.53: 4,
0.35: 4,
0.37: 4,
0.44: 4,
0.59: 3,
0.46: 3},
'dst_host_rerror_rate': {0.0: 4571036,
1.0: 260470,
0.01: 13143,
0.02: 6679,
0.03: 3445,
0.04: 2791,
0.05: 2143,
0.85: 1189,
0.87: 1158,
0.93: 1113,
0.06: 1096,
0.95: 999,
0.92: 995,
0.84: 975,
0.86: 933,
0.89: 863,
0.91: 821,
0.07: 816,
0.08: 810,
0.82: 806,
0.96: 743,
0.9: 720,
0.88: 689,
0.09: 651,
0.99: 651,
0.98: 626,
0.97: 618,
0.83: 601,
0.94: 554,
0.11: 530,
0.1: 529,
0.12: 514,
0.69: 505,
0.14: 480,
0.81: 472,
0.73: 468,
0.75: 468,
0.33: 463,
0.5: 460,
0.17: 448,
0.8: 426,
0.13: 416,
0.2: 413,
0.25: 397,
0.15: 370,
0.65: 326,
0.18: 321,
0.67: 309,
0.19: 305,
0.16: 298,
0.53: 293,
0.52: 292,
0.76: 286,
0.4: 285,
0.47: 281,
0.78: 275,
0.58: 272,
0.22: 270,
0.71: 268,
0.29: 252,
0.7: 251,
0.21: 248,
0.56: 245,
0.36: 243,
0.38: 241,
0.68: 241,
0.35: 235,
0.31: 235,
0.57: 232,
0.43: 229,
0.27: 228,
0.23: 227,
0.24: 226,
0.32: 225,
0.55: 222,
0.62: 220,
0.42: 219,
0.64: 217,
0.77: 214,
0.45: 214,
0.48: 213,
0.3: 213,
0.6: 213,
0.41: 212,
0.49: 209,
0.44: 203,
0.74: 200,
0.79: 200,
0.26: 195,
0.34: 193,
0.46: 191,
0.54: 189,
0.37: 183,
0.72: 182,
0.51: 182,
0.59: 180,
0.39: 178,
0.28: 176,
0.63: 175,
0.61: 162,
0.66: 144},
'dst_host_srv_rerror_rate': {0.0: 4575957,
1.0: 257113,
0.01: 17057,
0.02: 5104,
0.98: 3182,
0.04: 3103,
0.99: 2958,
0.03: 2885,
0.05: 2427,
0.97: 1451,
0.06: 1315,
0.95: 995,
0.96: 983,
0.94: 953,
0.07: 901,
0.93: 892,
0.89: 809,
0.8: 724,
0.78: 680,
0.91: 651,
0.74: 648,
0.87: 560,
0.85: 554,
0.84: 522,
0.92: 518,
0.75: 517,
0.82: 502,
0.67: 502,
0.9: 464,
0.68: 409,
0.79: 404,
0.08: 397,
0.83: 377,
0.86: 369,
0.53: 369,
0.66: 341,
0.88: 339,
0.56: 331,
0.72: 330,
0.69: 324,
0.76: 320,
0.55: 319,
0.6: 308,
0.33: 308,
0.62: 291,
0.77: 286,
0.58: 284,
0.71: 281,
0.65: 273,
0.57: 267,
0.54: 261,
0.5: 259,
0.81: 250,
0.64: 249,
0.7: 246,
0.4: 237,
0.09: 236,
0.29: 232,
0.12: 229,
0.73: 226,
0.59: 206,
0.61: 189,
0.45: 182,
0.51: 180,
0.52: 171,
0.35: 164,
0.13: 158,
0.63: 154,
0.42: 150,
0.49: 143,
0.38: 138,
0.34: 138,
0.41: 128,
0.39: 127,
0.36: 124,
0.44: 122,
0.47: 120,
0.11: 119,
0.43: 112,
0.48: 111,
0.1: 107,
0.31: 94,
0.25: 92,
0.46: 91,
0.37: 85,
0.2: 80,
0.32: 76,
0.14: 69,
0.27: 69,
0.17: 67,
0.24: 48,
0.15: 46,
0.3: 43,
0.28: 42,
0.18: 41,
0.22: 36,
0.16: 31,
0.26: 29,
0.19: 26,
0.23: 25,
0.21: 19},
'target': {'smurf.': 2807886,
'neptune.': 1072017,
'normal.': 972781,
'satan.': 15892,
'ipsweep.': 12481,
'portsweep.': 10413,
'nmap.': 2316,
'back.': 2203,
'warezclient.': 1020,
'teardrop.': 979,
'pod.': 264,
'guess_passwd.': 53,
'buffer_overflow.': 30,
'land.': 21,
'warezmaster.': 20,
'imap.': 12,
'rootkit.': 10,
'loadmodule.': 9,
'ftp_write.': 8,
'multihop.': 7,
'phf.': 4,
'perl.': 3,
'spy.': 2},
'target_type': {'DOS': 3883370,
'normal.': 972781,
'PROBING': 41102,
'R2L': 1126,
'U2R': 52}}
# #筛选发生概率大于99.9%的特征
# low_e_list =[]
# for i in features_dic.keys():
# for j in features_dic[i].values():
# if j/df.shape[0]>=0.999:
# low_e_list.append(i)
# low_e_list
['land',
'wrong_fragment',
'urgent',
'num_failed_logins',
'num_compromised',
'root_shell',
'su_attempted',
'num_file_creations',
'num_shells',
'num_access_files',
'is_hot_login',
'is_guest_login']
pd.crosstab(df.land,df.target_type)
target_type | DOS | PROBING | R2L | U2R | normal. |
---|---|---|---|---|---|
land | |||||
0 | 3883349 | 41102 | 1126 | 52 | 972774 |
1 | 21 | 0 | 0 | 0 | 7 |
pd.crosstab(df.land,df.target)
target | back. | buffer_overflow. | ftp_write. | guess_passwd. | imap. | ipsweep. | land. | loadmodule. | multihop. | neptune. | nmap. | normal. | perl. | phf. | pod. | portsweep. | rootkit. | satan. | smurf. | spy. | teardrop. | warezclient. | warezmaster. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
land | |||||||||||||||||||||||
0 | 2203 | 30 | 8 | 53 | 12 | 12481 | 0 | 9 | 7 | 1072017 | 2316 | 972774 | 3 | 4 | 264 | 10413 | 10 | 15892 | 2807886 | 2 | 979 | 1020 | 20 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(df['target_type'])
df['target_type']=le.transform(df['target_type'])
# 将 protocol_type, service,flag 三个字段转化为数值型
le_protocol_type = LabelEncoder()
le_protocol_type.fit(df.protocol_type)
df.protocol_type=le_protocol_type.transform(df.protocol_type)
service_tag = ['aol','auth','bgp','courier','csnet_ns','ctf','daytime', 'discard','domain','domain_u','echo','eco_i', 'ecr_i',
'efs', 'exec', 'finger', 'ftp', 'ftp_data', 'gopher', 'harvest', 'hostnames', 'http', 'http_2784', 'http_443',
'http_8001', 'imap4', 'IRC', 'iso_tsap', 'klogin', 'kshell', 'ldap', 'link', 'login', 'mtp', 'name', 'netbios_dgm',
'netbios_ns', 'netbios_ssn', 'netstat', 'nnsp', 'nntp', 'ntp_u', 'other', 'pm_dump', 'pop_2', 'pop_3', 'printer',
'private', 'red_i', 'remote_job', 'rje', 'shell', 'smtp', 'sql_net', 'ssh', 'sunrpc', 'supdup', 'systat', 'telnet',
'tftp_u', 'tim_i', 'time', 'urh_i', 'urp_i','uucp', 'uucp_path', 'vmnet', 'whois', 'X11', 'Z39_50','icmp']
le_service = LabelEncoder()
le_service.fit(service_tag)
df.service=le_service.transform(df.service)
le_flag = LabelEncoder()
le_flag.fit(df.flag)
df.flag = le_flag.transform(df.flag)
df.info()
RangeIndex: 4898431 entries, 0 to 4898430
Data columns (total 42 columns):
duration int64
protocol_type int32
service int32
flag int32
src_bytes int64
dst_bytes int64
land int64
wrong_fragment int64
urgent int64
hot int64
num_failed_logins int64
logged_in int64
num_compromised int64
root_shell int64
su_attempted int64
num_root int64
num_file_creations int64
num_shells int64
num_access_files int64
is_hot_login int64
is_guest_login int64
count int64
srv_count int64
serror_rate float64
srv_serror_rate float64
rerror_rate float64
srv_rerror_rate float64
same_srv_rate float64
diff_srv_rate float64
srv_diff_host_rate float64
dst_host_count int64
dst_host_srv_count int64
dst_host_same_srv_rate float64
dst_host_diff_srv_rate float64
dst_host_same_src_port_rate float64
dst_host_srv_diff_host_rate float64
dst_host_serror_rate float64
dst_host_srv_serror_rate float64
dst_host_rerror_rate float64
dst_host_srv_rerror_rate float64
target object
target_type int32
dtypes: float64(15), int32(4), int64(22), object(1)
memory usage: 1.5+ GB
X= df.iloc[:,:-2]
Y= df.iloc[:,-1]
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,Y,test_size = 0.3,random_state = 7)
X.shape
(4898431, 40)
Xtrain.shape
(3428901, 40)
Xtest.shape
(1469530, 40)
from sklearn.tree import DecisionTreeClassifier #导入分类树
dtclf=DecisionTreeClassifier(random_state=7)
dtclf = dtclf.fit(Xtrain,Ytrain)#训练模型
dt_score = dtclf.score(Xtest,Ytest)#查看模型效果
dt_score
0.9999394364184467
from sklearn.metrics import confusion_matrix
pd.DataFrame(confusion_matrix(Ytest,dtclf.predict(Xtest),labels=[0,1,2,3,4]))
0 | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
0 | 1165139 | 2 | 0 | 0 | 2 |
1 | 2 | 12242 | 0 | 0 | 18 |
2 | 1 | 2 | 307 | 2 | 18 |
3 | 0 | 0 | 2 | 10 | 10 |
4 | 12 | 7 | 7 | 4 | 291743 |
dtclf.feature_importances_.shape
(40,)
t1 = sorted([*zip(X.columns,dtclf.feature_importances_)],key=(lambda x:x[1]),reverse=True)
t1
[('count', 0.9068626046206024),
('dst_host_serror_rate', 0.02241779830887273),
('diff_srv_rate', 0.01812624171027743),
('dst_bytes', 0.016390409180257894),
('dst_host_srv_diff_host_rate', 0.011906366453233608),
('dst_host_diff_srv_rate', 0.007023148205235081),
('service', 0.0058209874567988875),
('src_bytes', 0.0035919929941658356),
('protocol_type', 0.00254284591630643),
('num_compromised', 0.001959164583740053),
('flag', 0.0011409009135562502),
('wrong_fragment', 0.0004906336598947696),
('dst_host_rerror_rate', 0.00035468112211381426),
('dst_host_same_src_port_rate', 0.0003331056598445668),
('duration', 0.00023222416376659689),
('hot', 0.00017104489484580593),
('dst_host_same_srv_rate', 0.00013519235138785438),
('dst_host_srv_rerror_rate', 0.00010031054379468164),
('dst_host_count', 7.133048115728888e-05),
('logged_in', 6.534276798013103e-05),
('dst_host_srv_count', 4.67301350246183e-05),
('dst_host_srv_serror_rate', 4.582179977679342e-05),
('srv_serror_rate', 4.0364479179341566e-05),
('is_guest_login', 3.7796381156556284e-05),
('num_failed_logins', 3.090826218805775e-05),
('same_srv_rate', 1.251117515084309e-05),
('srv_count', 1.0850180806941767e-05),
('srv_rerror_rate', 7.684478087600836e-06),
('srv_diff_host_rate', 6.686957867928859e-06),
('rerror_rate', 6.392373872147657e-06),
('num_root', 5.673540544638304e-06),
('serror_rate', 4.3915423435587785e-06),
('urgent', 3.797352024726769e-06),
('num_file_creations', 2.101587954030111e-06),
('num_shells', 1.7559380825881046e-06),
('root_shell', 2.0782810759976382e-07),
('land', 0.0),
('su_attempted', 0.0),
('num_access_files', 0.0),
('is_hot_login', 0.0)]
low_importance_fields =[]
for i in t1:
if i[1]<0.0001:
low_importance_fields.append(i[0])
low_importance_fields
['dst_host_count',
'logged_in',
'dst_host_srv_count',
'dst_host_srv_serror_rate',
'srv_serror_rate',
'is_guest_login',
'num_failed_logins',
'same_srv_rate',
'srv_count',
'srv_rerror_rate',
'srv_diff_host_rate',
'rerror_rate',
'num_root',
'serror_rate',
'urgent',
'num_file_creations',
'num_shells',
'root_shell',
'land',
'su_attempted',
'num_access_files',
'is_hot_login']
for i in low_importance_fields:
del X[i]
X.shape
(4898431, 18)
Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,Y,test_size = 0.3,random_state = 7)
Xtrain.shape
(3428901, 18)
from sklearn.model_selection import cross_val_score #导入进行交叉验证的模块
clf = DecisionTreeClassifier(random_state=7)
dt_score_cvs= cross_val_score(clf,X,Y,cv=10).mean()
dt_score_cvs
0.9569433478963363
plt.style.use('ggplot')
#设置rc动态参数
plt.rcParams['font.sans-serif']=['Simhei'] #显示中文
plt.rcParams['axes.unicode_minus']=False #设置显示中文后,负号显示受影响,显示负号
tr=[]
te=[]
for i in range(15):
clf = DecisionTreeClassifier(random_state=7
,max_depth=i+1)
clf = clf.fit(Xtrain, Ytrain)
score_tr = clf.score(Xtrain,Ytrain) #查看模型在训练集上的效果
score_te = cross_val_score(clf,X,Y,cv=10).mean() #查看模型在测试集上交叉验证后的均值
print("树深为:-----{},训练集分数为{},交叉验证分数为{}".format(i+1,score_tr,score_te))
tr.append(score_tr) #15次循环后在训练集上效果
te.append(score_te) #15次循环后在测试集上十折交叉验证的均值
print(max(te)) #打印在测试集上最好的效果 0.9965 最佳树深4
plt.figure(figsize=(10,6))
plt.plot(range(1,16),tr,color="red",label="train") #画模型在训练集和测试集上的效果图,可以根据模型在两个数据集上的表现判断模型是过拟合还是欠拟合,
plt.plot(range(1,16),te,color="blue",label="test") #然后进行相应的调参
plt.xticks(range(1,16))
plt.xlabel('max_depth')
plt.ylabel('score')
plt.title('不同树深对应的K折交叉验证分数和训练集的分数')
plt.legend();
树深为:-----1,训练集分数为0.9840625319891125,交叉验证分数为0.9835259490974406
树深为:-----2,训练集分数为0.9910102391407626,交叉验证分数为0.9863184763261226
树深为:-----3,训练集分数为0.9957683234365763,交叉验证分数为0.9914009198666749
树深为:-----4,训练集分数为0.9970279106920847,交叉验证分数为0.9965480794272645
树深为:-----5,训练集分数为0.9975254461998174,交叉验证分数为0.9549427078998493
树深为:-----6,训练集分数为0.997691971859205,交叉验证分数为0.9547009977767272
树深为:-----7,训练集分数为0.9987675351373516,交叉验证分数为0.9551670654213739
树深为:-----8,训练集分数为0.9993041502218932,交叉验证分数为0.956091034920217
树深为:-----9,训练集分数为0.9995115052898873,交叉验证分数为0.9562059697287826
树深为:-----10,训练集分数为0.9995774156209234,交叉验证分数为0.9567502246148385
树深为:-----11,训练集分数为0.9996159119204666,交叉验证分数为0.9564190987861902
树深为:-----12,训练集分数为0.9998060603091194,交叉验证分数为0.9568882282351435
树深为:-----13,训练集分数为0.9998430984154981,交叉验证分数为0.9569900976183685
树深为:-----14,训练集分数为0.9998626382039026,交叉验证分数为0.9568143273564772
树深为:-----15,训练集分数为0.9998655545902316,交叉验证分数为0.9566977596749681
0.9965480794272645
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QpheXdD4-1583246686076)(output_86_1.png)]
根据学习曲线可以发现当最大树深大于4时,交叉验证所得结果分数大于训练集分数,模型容易出现过拟合,所以这里设置树的最大树深为max_depth=4
from sklearn.model_selection import GridSearchCV
params ={
# 'splitter':('best','random'),
# 'criterion':('gini','entropy'),
# 'max_depth':[4],
# 'min_samples_split':[*range(2,20,2)],
# 'min_samples_leaf':[*range(1,10)]
}
clf_gcv = DecisionTreeClassifier(random_state=7)
GS = GridSearchCV(clf_gcv,params,cv =10,iid=True)
GS.fit(Xtrain,Ytrain)
D:\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py:823: FutureWarning: The parameter 'iid' is deprecated in 0.22 and will be removed in 0.24.
"removed in 0.24.", FutureWarning
GridSearchCV(cv=10, error_score=nan,
estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
presort='deprecated',
random_state=7, splitter='best'),
iid=True, n_jobs=None,
param_grid={'max_depth': [4],
'min_samples_split': [2, 4, 6, 8, 10, 12, 14, 16, 18]},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)
#'splitter': 'best'
# 'criterion': 'gini'
# 'min_samples_split': 2
# 'min_samples_leaf': 1
GS.best_params_
{'max_depth': 4, 'min_samples_split': 2}
GS.best_score_
0.997027035776186
params ={
'min_samples_leaf':range(5,50,10)}
clf_gcv = DecisionTreeClassifier(random_state=7)
GS = GridSearchCV(clf_gcv,params,cv =10,iid=True)
GS.fit(Xtrain,Ytrain)
D:\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py:823: FutureWarning: The parameter 'iid' is deprecated in 0.22 and will be removed in 0.24.
"removed in 0.24.", FutureWarning
GridSearchCV(cv=10, error_score=nan,
estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
presort='deprecated',
random_state=7, splitter='best'),
iid=True, n_jobs=None,
param_grid={'min_samples_leaf': range(5, 50, 10)},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)
GS.best_params_
{'min_samples_leaf': 5}
GS.best_score_
0.9999160080737239
params ={
'splitter':('best','random'),
'criterion':('gini','entropy'),
'max_depth':[*range(1,11)],
'min_samples_leaf':[*range(5,50,10)],
'min_impurity_decrease':[*np.linspace(0,0.5,10)]}
params2 ={
'splitter':('best','random'),
'criterion':('gini','entropy'),
'max_depth':[4],
'min_samples_leaf':[*range(1,10)],
'min_impurity_decrease':[*np.linspace(0,0.5,10)]}
clf2 = DecisionTreeClassifier(random_state=7)
GS2 = GridSearchCV(clf2,params2,cv=10,iid=True,n_jobs=-1)
GS2.fit(Xtrain,Ytrain)
V(clf,params,cv=10,iid=True)
GS.fit(Xtrain,Ytrain)
D:\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py:823: FutureWarning: The parameter 'iid' is deprecated in 0.22 and will be removed in 0.24.
"removed in 0.24.", FutureWarning
GridSearchCV(cv=10, error_score=nan,
estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
criterion='gini', max_depth=None,
max_features=None,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
presort='deprecated',
random_state=7, splitter='best'),
iid=True,...
'max_depth': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'min_impurity_decrease': [0.0, 0.05555555555555555,
0.1111111111111111,
0.16666666666666666,
0.2222222222222222,
0.2777777777777778,
0.3333333333333333,
0.38888888888888884,
0.4444444444444444, 0.5],
'min_samples_leaf': [5, 15, 25, 35, 45],
'splitter': ('best', 'random')},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)
```python
GS.best_params_
{'criterion': 'entropy',
'max_depth': 10,
'min_impurity_decrease': 0.0,
'min_samples_leaf': 5,
'splitter': 'best'}
GS.best_score_
0.9998906355126613
best_dtclf =DecisionTreeClassifier(random_state=7,
criterion ='gini',
max_depth =4,
min_samples_leaf =1,
# min_impurity_decrease=0.0,
splitter = 'best')
dt_score_cvs= cross_val_score(best_dtclf,X,Y,cv=10)
dt_score_cvs
array([0.9912911 , 0.99853422, 0.99625798, 0.99941614, 0.99853014,
0.99884249, 0.99311616, 0.99711744, 0.99695004, 0.99542506])
dt_score_cvs.mean()
0.9965480794272645
dt_score_cvs.var()
6.260831911813343e-06
last_clf = DecisionTreeClassifier(random_state=7,
criterion ='gini',
max_depth =4,
min_samples_leaf =1,
# min_impurity_decrease=0.0,
splitter = 'best')
last_clf = last_clf.fit(Xtrain,Ytrain)
score = last_clf.score(Xtest,Ytest)
score
n import tree
import graphviz
```python
Xtrain.columns.values
array(['duration', 'protocol_type', 'service', 'flag', 'src_bytes',
'dst_bytes', 'wrong_fragment', 'hot', 'num_compromised', 'count',
'diff_srv_rate', 'dst_host_same_srv_rate',
'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',
'dst_host_srv_diff_host_rate', 'dst_host_serror_rate',
'dst_host_rerror_rate', 'dst_host_srv_rerror_rate'], dtype=object)
dot_data =tree.export_graphviz(last_clf,
feature_names=Xtrain.columns.values
,class_names=le.classes_
,filled=True
,rounded=True)
graph=graphviz.Source(dot_data)
# graph.render('tree')
graph
y_pred = last_clf.predict(Xtest)
from sklearn.metrics import confusion_matrix
from collections import Counter
Counter(Ytest)
Counter({0: 1165143, 4: 291773, 1: 12262, 2: 330, 3: 22})
Counter(y_pred)
Counter({0: 1164089, 4: 295475, 1: 9966})
confusion_matrix(Ytest,y_pred,labels=[0,1,2,3,4])
array([[1163999, 24, 0, 0, 1120],
[ 70, 9701, 0, 0, 2491],
[ 0, 8, 0, 0, 322],
[ 0, 0, 0, 0, 22],
[ 20, 233, 0, 0, 291520]], dtype=int64)
res_con_mat = pd.DataFrame(confusion_matrix(Ytest,y_pred,labels=[0,1,2,3,4]))
res_con_mat.set_index(le.classes_,inplace= True)
res_con_mat.columns=le.classes_
res_con_mat
DOS | PROBING | R2L | U2R | normal. | |
---|---|---|---|---|---|
DOS | 1163999 | 24 | 0 | 0 | 1120 |
PROBING | 70 | 9701 | 0 | 0 | 2491 |
R2L | 0 | 8 | 0 | 0 | 322 |
U2R | 0 | 0 | 0 | 0 | 22 |
normal. | 20 | 233 | 0 | 0 | 291520 |
from sklearn.model_selection import train_test_split
Xtrain,Xtest,Ytrain,Ytest = train_test_split(X,Y,test_size = 0.3,random_state = 7)
X.shape
(4898431, 18)
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler(sampling_strategy='auto',random_state=7)
X_resampled, y_resampled = ros.fit_sample(Xtrain,Ytrain)
from collections import Counter
Counter(Ytrain)
Counter({0: 2718227, 4: 681008, 1: 28840, 2: 796, 3: 30})
Counter(y_resampled)
Counter({0: 2718227, 4: 2718227, 1: 2718227, 2: 2718227, 3: 2718227})
plt.style.use('ggplot')
#设置rc动态参数
plt.rcParams['font.sans-serif']=['Simhei'] #显示中文
plt.rcParams['axes.unicode_minus']=False #设置显示中文后,负号显示受影响,显示负号
tr=[]
te=[]
for i in range(15):
clf = DecisionTreeClassifier(random_state=7
,max_depth=i+1)
clf = clf.fit(X_resampled, y_resampled)
score_tr = clf.score(X_resampled,y_resampled) #查看模型在训练集上的效果
score_te = cross_val_score(clf,X,Y,cv=10).mean() #查看模型在测试集上交叉验证后的均值
print("树深为:-----{},训练集分数为{},交叉验证分数为{}".format(i+1,score_tr,score_te))
tr.append(score_tr) #15次循环后在训练集上效果
te.append(score_te) #15次循环后在测试集上十折交叉验证的均值
print(max(te)) #打印在测试集上最好的效果
树深为:-----1,训练集分数为0.3982541561098466,交叉验证分数为0.9835259490974406
树深为:-----2,训练集分数为0.5927148836355463,交叉验证分数为0.9863184763261226
树深为:-----3,训练集分数为0.7472467163338455,交叉验证分数为0.9914009198666749
树深为:-----4,训练集分数为0.8898918302260996,交叉验证分数为0.9965480794272645
树深为:-----5,训练集分数为0.9471810853177457,交叉验证分数为0.9549427078998493
树深为:-----6,训练集分数为0.9571636953058005,交叉验证分数为0.9547009977767272
树深为:-----7,训练集分数为0.9761342963630337,交叉验证分数为0.9551670654213739
树深为:-----8,训练集分数为0.9889636148857325,交叉验证分数为0.956091034920217
树深为:-----9,训练集分数为0.9930135341897495,交叉验证分数为0.9562059697287826
树深为:-----10,训练集分数为0.9973434889727752,交叉验证分数为0.9567502246148385
树深为:-----11,训练集分数为0.9989269476022422,交叉验证分数为0.9564190987861902
树深为:-----12,训练集分数为0.9993786390908486,交叉验证分数为0.9568882282351435
树深为:-----13,训练集分数为0.9996491095114572,交叉验证分数为0.9569900976183685
树深为:-----14,训练集分数为0.9997410812268438,交叉验证分数为0.9568143273564772
树深为:-----15,训练集分数为0.999755649546561,交叉验证分数为0.9566977596749681
0.9965480794272645
fig1 =plt.figure(figsize=(10,6))
plt.plot(range(1,16),tr,color="red",label="train") #画模型在训练集和测试集上的效果图,可以根据模型在两个数据集上的表现判断模型是过拟合还是欠拟合,
plt.plot(range(1,16),te,color="blue",label="test") #然后进行相应的调参
plt.xticks(range(1,16))
plt.xlabel('max_depth')
plt.ylabel('score')
plt.title('过采样后不同树深对应的K折交叉验证分数和训练集的分数')
plt.legend()
plt.savefig('out_file/过采样后学习曲线.png',dpi=300)
params ={
# 'splitter':('best','random'),
# 'criterion':('gini','entropy'),
# 'max_depth':[6],
# 'min_samples_split':[*range(2,20,2)],
# 'min_samples_leaf':[*range(1,10)]
}
clf_gcv = DecisionTreeClassifier(random_state=7)
GS = GridSearchCV(clf_gcv,params,cv =10,iid=True)
GS.fit(X_resampled,y_resampled)
print(GS.best_score_)
GS.best_params_
# 'criterion': 'entropy'
# 'max_depth': 6
# 'splitter': 'best'
# 'min_samples_split': 2
# 'min_samples_leaf': 1
print(GS.best_score_)
GS.best_params_
0.9571614879846312
{'max_depth': 6, 'min_samples_leaf': 1}
last_clf_os = DecisionTreeClassifier(random_state=7,
criterion ='entropy',
max_depth =6,
min_samples_leaf =1,
# min_impurity_decrease=0.0,
splitter = 'best')
last_clf_os = last_clf_os.fit(X_resampled,y_resampled)
score_os = last_clf_os.score(Xtest,Ytest)
score_os
0.9900607677284574
from sklearn import tree
import graphviz
dot_data_os =tree.export_graphviz(last_clf_os,
feature_names=X_resampled.columns.values
,class_names=le.classes_
,filled=True
,rounded=True)
graph_os=graphviz.Source(dot_data_os)
# graph_os.render('out_file/tree_os2')
graph_os
y_pred_os = last_clf_os.predict(Xtest)
TP:真正例,实际为正预测为正;
FP:假正例,实际为负但预测为正;
FN:假反例,实际为正但预测为负;
TN:真反例,实际为负预测为负
查准率(精准率):Precision = TP / (TP+FP);
查全率(召回率):Recall = TP / (TP+FN);
正确率(准确率):Accuracy = (TP+TN) / (TP+FP+TN+FN)
F值(F1-scores):Precision和Recall加权调和平均数,并假设两者一样重要。
F1-score = (2Recall*Precision) / (Recall + Precision)
res_con_mat_os = pd.DataFrame(confusion_matrix(Ytest,y_pred_os,labels=[0,1,2,3,4]))
res_con_mat_os.set_index(le.classes_,inplace= True)
res_con_mat_os.columns=le.classes_
res_con_mat_os
DOS | PROBING | R2L | U2R | normal. | |
---|---|---|---|---|---|
DOS | 1161582 | 67 | 74 | 48 | 3372 |
PROBING | 2 | 12192 | 2 | 8 | 58 |
R2L | 0 | 3 | 319 | 2 | 6 |
U2R | 0 | 0 | 2 | 17 | 3 |
normal. | 56 | 3036 | 1990 | 5877 | 280814 |
res_con_mat_os['T_sum']=res_con_mat_os.apply(lambda x:x.sum(),axis=1)
res_con_mat_os.loc['P_sum']=res_con_mat_os.apply(lambda x:x.sum())
res_con_mat_os
DOS | PROBING | R2L | U2R | normal. | T_sum | |
---|---|---|---|---|---|---|
DOS | 1161582 | 67 | 74 | 48 | 3372 | 1165143 |
PROBING | 2 | 12192 | 2 | 8 | 58 | 12262 |
R2L | 0 | 3 | 319 | 2 | 6 | 330 |
U2R | 0 | 0 | 2 | 17 | 3 | 22 |
normal. | 56 | 3036 | 1990 | 5877 | 280814 | 291773 |
P_sum | 1161640 | 15298 | 2387 | 5952 | 284253 | 1469530 |
res_con_mat_os.loc['P_sum','DOS']
1161640
DOS_detection_rate=res_con_mat_os.loc['DOS','DOS']/res_con_mat_os.loc['DOS','T_sum']
DOS_detection_rate
0.996943722787675
##构造检测率(召回率)recall 本类真正类占本类所有正类的比例
detection_rate = []
for i in list(res_con_mat_os.columns[:-1]):
# print(i)
# print(res_con_mat_os.loc[i,i])
detection_rate.append(res_con_mat_os.loc[i,i]/res_con_mat_os.loc[i,'T_sum'])
detection_rate
[0.996943722787675,
0.9942913064752895,
0.9666666666666667,
0.7727272727272727,
0.9624399790247898]
DOS_fpr = 1-res_con_mat_os.loc['DOS','DOS']/res_con_mat_os.loc['P_sum','DOS']
DOS_fpr
4.9929410144256003e-05
##构造误报率(FPR) 不是本类却预测为该类
fpr=[]
for i in list(res_con_mat_os.columns[:-1]):
# print(i)
# print(res_con_mat_os.loc[i,i])
fpr.append(1-res_con_mat_os.loc[i,i]/res_con_mat_os.loc['P_sum',i])
fpr
[4.9929410144256003e-05,
0.2030330762191136,
0.8663594470046083,
0.9971438172043011,
0.012098377149933337]
res = pd.DataFrame({
'类别':le.classes_,'检测率':detection_rate,'误报率':fpr})
# res.to_excel('out_file/检测率2.xlsx')
res
类别 | 检测率 | 误报率 | |
---|---|---|---|
0 | DOS | 0.996944 | 0.000050 |
1 | PROBING | 0.994291 | 0.203033 |
2 | R2L | 0.966667 | 0.866359 |
3 | U2R | 0.772727 | 0.997144 |
4 | normal. | 0.962440 | 0.012098 |
colors = ['k','g','r','orange','blue']
label_list= res.类别
fig =plt.figure(figsize=(10,6))
for i in range(5):
x=res.loc[res.index==i,'误报率']
y=res.loc[res.index==i,'检测率']
plt.scatter(x,y,c=colors[i],cmap='brg',s=40,alpha=0.8,marker='8')
plt.xticks(np.arange(0.0,1.1,0.1))
plt.yticks(np.arange(0.4,1.1,0.1))
plt.xlabel('误报率')
plt.ylabel('检测率')
plt.title('过采样后各类别的评估参数散点图')
ax = fig.gca()
handles,labels = ax.get_legend_handles_labels()
ax.legend(handles, labels = label_list, loc='lower left')
# plt.savefig('out_file/评估参数散点图2.png',dpi=300)
plt.show();
D:\Anaconda3\lib\site-packages\ipykernel_launcher.py:16: UserWarning: You have mixed positional and keyword arguments, some input may be discarded.
app.launch_new_instance()
检测率越高,误报率越低,该模型对该类的分类效果最好
从检测率看,DOS、PROBING、R2L都在0.9以上,normal.在0.88以上,该模型对这几类的识别有较好的表现,U2R表现最差,只有0.5
从误报率来看,DOS、normal.都在0.05以下,该模型对这两类的识别有较好的表现,PROBING的误报率为0.72,R2L和U2R的误报率都在0.9以上,表现最差
从图中可以判断出,该模型识别效果(检测率和误报率权重相同的情况下)排序如下:DOS、normal、PROBING、R2L、U2R
df_test = pd.read_csv('test_data_unlabeled.csv',header=None)
# 添加列名
df_test.columns = col_name[:-1]
df_to_out_file=df_test.copy()
df_test.info()
RangeIndex: 2984154 entries, 0 to 2984153
Data columns (total 41 columns):
duration int64
protocol_type object
service object
flag object
src_bytes int64
dst_bytes int64
land int64
wrong_fragment int64
urgent int64
hot int64
num_failed_logins int64
logged_in int64
num_compromised int64
root_shell int64
su_attempted int64
num_root int64
num_file_creations int64
num_shells int64
num_access_files int64
num_outbound_cmds int64
is_hot_login int64
is_guest_login int64
count int64
srv_count int64
serror_rate float64
srv_serror_rate float64
rerror_rate float64
srv_rerror_rate float64
same_srv_rate float64
diff_srv_rate float64
srv_diff_host_rate float64
dst_host_count int64
dst_host_srv_count int64
dst_host_same_srv_rate float64
dst_host_diff_srv_rate float64
dst_host_same_src_port_rate float64
dst_host_srv_diff_host_rate float64
dst_host_serror_rate float64
dst_host_srv_serror_rate float64
dst_host_rerror_rate float64
dst_host_srv_rerror_rate float64
dtypes: float64(15), int64(23), object(3)
memory usage: 933.5+ MB
共2984154条记录
df_test.describe().T
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
duration | 2984154.0 | 3.720818 | 243.953368 | 0.0 | 0.00 | 0.0 | 0.00 | 66366.0 |
src_bytes | 2984154.0 | 768.880216 | 45551.303068 | 0.0 | 105.00 | 520.0 | 1032.00 | 62825648.0 |
dst_bytes | 2984154.0 | 730.889662 | 39914.221849 | 0.0 | 0.00 | 0.0 | 0.00 | 32317698.0 |
land | 2984154.0 | 0.000003 | 0.001737 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
wrong_fragment | 2984154.0 | 0.000477 | 0.035681 | 0.0 | 0.00 | 0.0 | 0.00 | 3.0 |
urgent | 2984154.0 | 0.000014 | 0.006099 | 0.0 | 0.00 | 0.0 | 0.00 | 6.0 |
hot | 2984154.0 | 0.005270 | 0.303767 | 0.0 | 0.00 | 0.0 | 0.00 | 233.0 |
num_failed_logins | 2984154.0 | 0.000260 | 0.017102 | 0.0 | 0.00 | 0.0 | 0.00 | 5.0 |
logged_in | 2984154.0 | 0.147073 | 0.354178 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
num_compromised | 2984154.0 | 0.004904 | 1.480858 | 0.0 | 0.00 | 0.0 | 0.00 | 942.0 |
root_shell | 2984154.0 | 0.000080 | 0.008930 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
su_attempted | 2984154.0 | 0.000017 | 0.005399 | 0.0 | 0.00 | 0.0 | 0.00 | 2.0 |
num_root | 2984154.0 | 0.004576 | 1.616186 | 0.0 | 0.00 | 0.0 | 0.00 | 1013.0 |
num_file_creations | 2984154.0 | 0.000568 | 0.104977 | 0.0 | 0.00 | 0.0 | 0.00 | 100.0 |
num_shells | 2984154.0 | 0.000009 | 0.004254 | 0.0 | 0.00 | 0.0 | 0.00 | 5.0 |
num_access_files | 2984154.0 | 0.000689 | 0.027856 | 0.0 | 0.00 | 0.0 | 0.00 | 7.0 |
num_outbound_cmds | 2984154.0 | 0.000000 | 0.000000 | 0.0 | 0.00 | 0.0 | 0.00 | 0.0 |
is_hot_login | 2984154.0 | 0.000006 | 0.002456 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
is_guest_login | 2984154.0 | 0.000644 | 0.025377 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
count | 2984154.0 | 280.423016 | 217.434739 | 0.0 | 95.00 | 236.0 | 511.00 | 511.0 |
srv_count | 2984154.0 | 245.349697 | 239.442417 | 0.0 | 8.00 | 136.0 | 511.00 | 511.0 |
serror_rate | 2984154.0 | 0.060077 | 0.235591 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
srv_serror_rate | 2984154.0 | 0.060017 | 0.236513 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
rerror_rate | 2984154.0 | 0.145965 | 0.351468 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
srv_rerror_rate | 2984154.0 | 0.145926 | 0.352154 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
same_srv_rate | 2984154.0 | 0.808191 | 0.377635 | 0.0 | 1.00 | 1.0 | 1.00 | 1.0 |
diff_srv_rate | 2984154.0 | 0.024612 | 0.106544 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
srv_diff_host_rate | 2984154.0 | 0.025781 | 0.125967 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
dst_host_count | 2984154.0 | 235.507335 | 60.337888 | 0.0 | 255.00 | 255.0 | 255.00 | 255.0 |
dst_host_srv_count | 2984154.0 | 199.141008 | 100.880118 | 0.0 | 248.00 | 255.0 | 255.00 | 255.0 |
dst_host_same_srv_rate | 2984154.0 | 0.790242 | 0.391747 | 0.0 | 0.99 | 1.0 | 1.00 | 1.0 |
dst_host_diff_srv_rate | 2984154.0 | 0.024176 | 0.095417 | 0.0 | 0.00 | 0.0 | 0.01 | 1.0 |
dst_host_same_src_port_rate | 2984154.0 | 0.567627 | 0.489481 | 0.0 | 0.00 | 1.0 | 1.00 | 1.0 |
dst_host_srv_diff_host_rate | 2984154.0 | 0.004283 | 0.034120 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
dst_host_serror_rate | 2984154.0 | 0.060003 | 0.234881 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
dst_host_srv_serror_rate | 2984154.0 | 0.059886 | 0.236330 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
dst_host_rerror_rate | 2984154.0 | 0.145625 | 0.349760 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
dst_host_srv_rerror_rate | 2984154.0 | 0.145907 | 0.351974 | 0.0 | 0.00 | 0.0 | 0.00 | 1.0 |
# 删除在训练集中属性值只有一个的字段
for i in only_1_field:
del df_test[i]
df_test.head()
duration | protocol_type | service | flag | src_bytes | dst_bytes | land | wrong_fragment | urgent | hot | ... | dst_host_count | dst_host_srv_count | dst_host_same_srv_rate | dst_host_diff_srv_rate | dst_host_same_src_port_rate | dst_host_srv_diff_host_rate | dst_host_serror_rate | dst_host_srv_serror_rate | dst_host_rerror_rate | dst_host_srv_rerror_rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | udp | private | SF | 105 | 146 | 0 | 0 | 0 | 0 | ... | 1 | 1 | 1.0 | 0.00 | 1.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 0 | udp | private | SF | 105 | 146 | 0 | 0 | 0 | 0 | ... | 255 | 254 | 1.0 | 0.01 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 0 | udp | private | SF | 105 | 146 | 0 | 0 | 0 | 0 | ... | 255 | 254 | 1.0 | 0.01 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 0 | udp | private | SF | 105 | 146 | 0 | 0 | 0 | 0 | ... | 255 | 254 | 1.0 | 0.01 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | 0 | udp | private | SF | 105 | 146 | 0 | 0 | 0 | 0 | ... | 255 | 254 | 1.0 | 0.01 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5 rows × 40 columns
#将离散的字符串型字段转化为数值
df_test.protocol_type = le_protocol_type.transform(df_test.protocol_type)
df_test.service = le_service.transform(df_test.service)
df_test.flag = le_flag.transform(df_test.flag)
X_resampled.columns
Index(['duration', 'protocol_type', 'service', 'flag', 'src_bytes',
'dst_bytes', 'wrong_fragment', 'hot', 'num_compromised', 'count',
'diff_srv_rate', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate',
'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate',
'dst_host_serror_rate', 'dst_host_rerror_rate',
'dst_host_srv_rerror_rate'],
dtype='object')
X_test_to_predict = df_test[X_resampled.columns.values]
X_test_to_predict
duration | protocol_type | service | flag | src_bytes | dst_bytes | wrong_fragment | hot | num_compromised | count | diff_srv_rate | dst_host_same_srv_rate | dst_host_diff_srv_rate | dst_host_same_src_port_rate | dst_host_srv_diff_host_rate | dst_host_serror_rate | dst_host_rerror_rate | dst_host_srv_rerror_rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 2 | 50 | 9 | 105 | 146 | 0 | 0 | 0 | 1 | 0.0 | 1.0 | 0.00 | 1.00 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 0 | 2 | 50 | 9 | 105 | 146 | 0 | 0 | 0 | 1 | 0.0 | 1.0 | 0.01 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 0 | 2 | 50 | 9 | 105 | 146 | 0 | 0 | 0 | 1 | 0.0 | 1.0 | 0.01 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 0 | 2 | 50 | 9 | 105 | 146 | 0 | 0 | 0 | 1 | 0.0 | 1.0 | 0.01 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | 0 | 2 | 50 | 9 | 105 | 146 | 0 | 0 | 0 | 1 | 0.0 | 1.0 | 0.01 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2984149 | 0 | 2 | 50 | 9 | 105 | 147 | 0 | 0 | 0 | 2 | 0.0 | 1.0 | 0.00 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
2984150 | 0 | 2 | 50 | 9 | 105 | 105 | 0 | 0 | 0 | 3 | 0.0 | 1.0 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 |
2984151 | 0 | 2 | 50 | 9 | 105 | 147 | 0 | 0 | 0 | 4 | 0.0 | 1.0 | 0.00 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
2984152 | 0 | 2 | 50 | 9 | 105 | 105 | 0 | 0 | 0 | 1 | 0.0 | 1.0 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 |
2984153 | 0 | 2 | 50 | 9 | 105 | 147 | 0 | 0 | 0 | 2 | 0.0 | 1.0 | 0.00 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
2984154 rows × 18 columns
X_test_to_predict.shape
(2984154, 18)
##根据模型预测未知数据集
y_to_predict = last_clf_os.predict(X_test_to_predict)
y_to_predict
array([4, 4, 4, ..., 4, 4, 4])
y_p_LABEL =le.inverse_transform(y_to_predict)
df_to_out_file['pre_result'] = y_p_LABEL
df_to_out_file.to_csv('out_file/test_result_by_dtc.csv',header=False,index=False)