Spark on yarn:Spark 使用了 yarn 管理器。Spark 运行在 YARN 上时,不需要启动 Spark 集群,只需要启动 YARN 即可, YARN 的 ResourceManager 相当于 Spark Standalone 模式下的 Master。
Cluster和Client模式最本质的区别是:Driver程序运行在哪里!
运行在YARN集群中就是Cluster模式,
运行在客户端就是Client模式
当然还有由本质区别延伸出来的区别,面试的时候能简单说出几点就行
●cluster模式:生产环境中使用该模式
1.Driver程序在YARN集群中
2.应用的运行结果不能在客户端显示
3.该模式下Driver运行ApplicattionMaster这个进程中,如果出现问题,yarn会重启ApplicattionMaster(Driver)
●client模式:
1.Driver运行在Client上的SparkSubmit进程中
2.应用程序运行结果会在客户端显示
●说明
在企业生产环境中大部分都是cluster部署模式运行Spark应用
Spark On YARN的Cluster模式 指的是Driver程序运行在YARN集群上
●补充Driver是什么:
运行应用程序的main()函数并创建SparkContext的进程
●图解
●运行示例程序
spark-shell是一个简单的用来测试的交互式窗口
spark-submit用来提交打成jar包的任务
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/examples/jars/spark-examples_2.11-2.2.0.jar \
10
●查看界面
http://node01:8088/cluster
●说明
Spark On YARN的Client模式 指的是Driver程序运行在提交任务的客户端
●图解
●运行示例程序
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/examples/jars/spark-examples_2.11-2.2.0.jar \
10
spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下可以用scala编写spark程序,适合学习测试时使用!
●示例
spark-shell可以携带参数
spark-shell --master local[N] 数字N表示在本地模拟N个线程来运行当前任务
spark-shell --master local[*] *表示使用当前机器上所有可用的资源
默认不携带参数就是--master local[*]
spark-shell --master spark://node01:7077,node02:7077 表示运行在集群上
spark-submit命令用来提交jar包给spark集群/YARN
spark-shell交互式编程确实很方便我们进行学习测试,但是在实际中我们一般是使用IDEA开发Spark应用程序打成jar包交给Spark集群/YARN去执行。
spark-submit命令是我们开发时常用的!!!
●Master参数形式
Master形式 |
解释 |
local |
本地以一个worker线程运行(例如非并行的情况). |
local[N] |
本地以K worker 线程 (理想情况下, N设置为你机器的CPU核数). |
local[*] |
本地以本机同样核数的线程运行. |
spark://HOST:PORT |
连接到指定的Spark standalone cluster master. 端口是你的master集群配置的端口,缺省值为7077. |
mesos://HOST:PORT |
连接到指定的Mesos 集群. Port是你配置的mesos端口, 默认5050. 或者使用ZK,格式为 mesos://zk://.... |
yarn-client |
以client模式连接到YARN cluster. 集群的位置基于HADOOP_CONF_DIR 变量找到. |
yarn-cluster |
以cluster模式连接到YARN cluster. 集群的位置基于HADOOP_CONF_DIR 变量找到. |
其他参数示例
--master spark://node01:7077 指定 Master 的地址
--name "appName" 指定程序运行的名称
--class 程序的main方法所在的类
--jars xx.jar 程序额外使用的 jar 包
--driver-memory 512m Driver运行所需要的内存, 默认1g
--executor-memory 2g 指定每个 executor 可用内存为 2g, 默认1g
--executor-cores 1 指定每一个 executor 可用的核数
--total-executor-cores 2 指定整个集群运行任务使用的 cup 核数为 2 个
--queue default 指定任务的对列
--deploy-mode 指定运行模式(client/cluster)
●注意:
如果 worker 节点的内存不足,那么在启动 spark-submit的时候,就不能为 executor分配超出 worker 可用的内存容量。
如果--executor-cores超过了每个 worker 可用的 cores,任务处于等待状态。
如果--total-executor-cores即使超过可用的 cores,默认使用所有的。以后当集群其他的资源释放之后,就会被该程序所使用。
如果内存或单个 executor 的 cores 不足,启动 spark-submit 就会报错,任务处于等待状态,不能正常执行。
1.创建Maven项目并补全目录、配置pom.xml
4.0.0
cn.itcast
SparkDemo
1.0-SNAPSHOT
aliyun
http://maven.aliyun.com/nexus/content/groups/public/
cloudera
https://repository.cloudera.com/artifactory/cloudera-repos/
jboss
http://repository.jboss.com/nexus/content/groups/public
1.8
1.8
UTF-8
2.11.8
2.11
2.7.4
2.2.0
org.scala-lang
scala-library
${scala.version}
org.apache.spark
spark-core_2.11
${spark.version}
org.apache.spark
spark-sql_2.11
${spark.version}
org.apache.spark
spark-hive_2.11
${spark.version}
org.apache.spark
spark-hive-thriftserver_2.11
${spark.version}
org.apache.spark
spark-streaming_2.11
${spark.version}
org.apache.spark
spark-streaming-kafka-0-10_2.11
${spark.version}
org.apache.spark
spark-sql-kafka-0-10_2.11
${spark.version}
org.apache.hadoop
hadoop-client
2.7.4
org.apache.hbase
hbase-client
1.3.1
org.apache.hbase
hbase-server
1.3.1
com.typesafe
config
1.3.3
mysql
mysql-connector-java
5.1.38
src/main/scala
src/test/scala
org.apache.maven.plugins
maven-compiler-plugin
3.5.1
net.alchim31.maven
scala-maven-plugin
3.2.2
compile
testCompile
-dependencyfile
${project.build.directory}/.scala_dependencies
org.apache.maven.plugins
maven-surefire-plugin
2.18.1
false
true
**/*Test.*
**/*Suite.*
org.apache.maven.plugins
maven-shade-plugin
2.3
package
shade
*:*
META-INF/*.SF
META-INF/*.DSA
META-INF/*.RSA
package cn.itcast.sparkhello
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount {
def main(args: Array[String]): Unit = {
//1.创建SparkContext
val config = new SparkConf().setAppName("wc").setMaster("local[*]")
val sc = new SparkContext(config)
sc.setLogLevel("WARN")
//2.读取文件
//A Resilient Distributed Dataset (RDD)弹性分布式数据集
//可以简单理解为分布式的集合,但是spark对它做了很多的封装,
//让程序员使用起来就像操作本地集合一样简单,这样大家就很happy了
val fileRDD: RDD[String] = sc.textFile("D:\\授课\\190429\\资料\\data\\words.txt")
//3.处理数据
//3.1对每一行按空切分并压平形成一个新的集合中装的一个个的单词
//flatMap是对集合中的每一个元素进行操作,再进行压平
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
//3.2每个单词记为1
val wordAndOneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
//3.3根据key进行聚合,统计每个单词的数量
//wordAndOneRDD.reduceByKey((a,b)=>a+b)
//第一个_:之前累加的结果
//第二个_:当前进来的数据
val wordAndCount: RDD[(String, Int)] = wordAndOneRDD.reduceByKey(_+_)
//4.收集结果
val result: Array[(String, Int)] = wordAndCount.collect()
result.foreach(println)
}
}
package cn.itcast.sparkhello
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount {
def main(args: Array[String]): Unit = {
//1.创建SparkContext
val config = new SparkConf().setAppName("wc")//.setMaster("local[*]")
val sc = new SparkContext(config)
sc.setLogLevel("WARN")
//2.读取文件
//A Resilient Distributed Dataset (RDD)弹性分布式数据集
//可以简单理解为分布式的集合,但是spark对它做了很多的封装,
//让程序员使用起来就像操作本地集合一样简单,这样大家就很happy了
val fileRDD: RDD[String] = sc.textFile(args(0)) //文件输入路径
//3.处理数据
//3.1对每一行按空切分并压平形成一个新的集合中装的一个个的单词
//flatMap是对集合中的每一个元素进行操作,再进行压平
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
//3.2每个单词记为1
val wordAndOneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
//3.3根据key进行聚合,统计每个单词的数量
//wordAndOneRDD.reduceByKey((a,b)=>a+b)
//第一个_:之前累加的结果
//第二个_:当前进来的数据
val wordAndCount: RDD[(String, Int)] = wordAndOneRDD.reduceByKey(_+_)
wordAndCount.saveAsTextFile(args(1))//文件输出路径
//4.收集结果
//val result: Array[(String, Int)] = wordAndCount.collect()
//result.foreach(println)
}
}
打包,上传
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class cn.itcast.sparkhello.WordCount \
--master spark://node01:7077,node02:7077 \
--executor-memory 1g \
--total-executor-cores 2 \
/root/wc.jar \
hdfs://node01:8020/aa.txt \
hdfs://node01:8020/cc
/export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/bin/spark-submit \
--class cn.itcast.sparkhello.WordCount \
--master yarn \
--deploy-mode cluster \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 2 \
--queue default \
/root/wc.jar \
hdfs://node01:8020/wordcount/input/words.txt \
hdfs://node01:8020/wordcount/output5