杭电acm1232 hdu-acm-1232畅通工程解题报告

题目地址链接:

点击打开原题链接

原题内容:

畅通工程

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 30409    Accepted Submission(s): 15974


Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
 


 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
 


 

Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
 


 

Sample Input
 
   
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
 


 

Sample Output
 
   
1 0 2 998

 

题目分析:

  这个题要是学习了并查集,题很容易做,不学习的话很难;

   并查集就是先假设自己的上级是自己,然后根绝题中的给出,修改自己的上级;知道最后,如果自己的上级还是自己的话,那么就需要几个来联通;

首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……

以下面这组数据输入数据来说明

4 2 1 3 4 3

第一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而且可能有回路。 这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000 ];

int find(int x)                                                                                                         //查找根节点

    int r=x;

    while ( pre[r ] != r )                                                                                              //返回根节点 r

          r=pre[r ];

 

    int i=x , j ;

    while( i != r )                                                                                                        //路径压缩

    {

          j = pre[ i ]; // 在改变上级之前用临时变量  j 记录下他的值 

         pre[ i ]= r ; //把上级改为根节点

         i=j;

    }

    return r ;

}

 

 

void join(int x,int y)                                                                                                    //判断x y是否连通,

                                                                                             //如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起,

{

    int fx=find(x),fy=find(y);

    if(fx!=fy)

        pre[fx ]=fy;

}

 

为了解释并查集的原理,我将举一个更有爱的例子。 话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。

但是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

杭电acm1232 hdu-acm-1232畅通工程解题报告_第1张图片

下面我们来看并查集的实现。 int pre[1000];  这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。 find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int x)                                                                  //查找我(x)的掌门

{

    int r=x;                                                                       //委托 r 去找掌门

    while (pre[r ]!=r)                                                        //如果r的上级不是r自己(也就是说找到的大侠他不是掌门)

    r=pre[r ] ;                                                                   // r 就接着找他的上级,直到找到掌门为止。

    return  r ;                                                                   //掌门驾到~~~

}

再来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢? 还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int x,int y)                                                                   //我想让虚竹和周芷若做朋友

{

     int fx=find(x),fy=find(y);                                                       //虚竹的老大是玄慈,芷若MM的老大是灭绝

    if(fx!=fy)                                                                               //玄慈和灭绝显然不是同一个人

    pre[fx ]=fy;                                                                           //方丈只好委委屈屈地当了师太的手下啦

}

再来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完全做到,也最好尽量接近。这样就产生了路径压缩算法。 设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?” 上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。 “哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。 “等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。 白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻环。” “唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。 这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

 

 

 

 

 

代码如下:

#include
int num[1010];
int f(int a)
{
	return num[a]==a?a:f(num[a]);
}

main()
{
	int i,x,y,a,b,m,n;
	while(~scanf("%d",&n),n)
	{
		scanf("%d",&m);
		for(i=1;i<=n;i++)
		num[i]=i;
		for(i=1;i<=m;i++)
		{
			scanf("%d%d",&a,&b);
			x=f(a);
			y=f(b);
			if(x!=y)
			num[x]=y;
		}
		int answer=0;
			for(i=1;i<=n;i++)
			{
				if(num[i]==i)
				answer++;
				
			}
		printf("%d\n",--answer);
	}
	return 0;
} 


 

运算结果截图:

杭电acm1232 hdu-acm-1232畅通工程解题报告_第2张图片

你可能感兴趣的:(杭电acm1232 hdu-acm-1232畅通工程解题报告)